Python进阶----进程之间通信(互斥锁,队列(参数:timeout和block),), ***生产消费者模型

Python进阶----进程之间通信(互斥锁,队列(参数:timeout和block),), ***生产消费者模型

一丶互斥锁

含义:

​ ​ ​ 每个对象都对应于一个可称为" 互斥锁" 的标记,这个标记用来保证在任一时刻,只能有一个线程访问该对象(串行)

目的:

 ​ ​ 来保证共享数据操作的完整性和安全性(文本数据),保证数据的公平性

区别join:

 ​ ​ 共同点: 都能实现cpu的进程串行

 ​ ​ 不同点: join是人为指定顺序, 不能保证公平性. 互斥锁能够保证公平性

### 加锁处理
from multiprocessing import Lock

def task1(loc):
    loc.acquire()					# 上锁
    print('task1: 开始打印')
    time.sleep(random.randint(1,3))
    print('task1: 结束打印')
    loc.release()					# 解锁

def task2(loc):
    loc.acquire()
    print('task2: 开始打印')
    time.sleep(random.randint(1,3))
    print('task2: 结束打印')
    loc.release()


def task3(loc):
    loc.acquire()
    print('task3: 开始打印')
    time.sleep(random.randint(1,3))
    print('task3: 结束打印')
    loc.release()


if __name__ == '__main__':
    loc=Lock()			# 生成锁对象
    p1=Process(target=task1,args=(loc,)).start()		#把锁对象作为参数传给具体的方法
    p2=Process(target=task2,args=(loc,)).start()
    p3=Process(target=task3,args=(loc,)).start()

锁死:(下一篇细说锁死)

​ ​ ​  当一个进程或者一个线程一直调用或者占用同一锁Lock而不释放资源而导致其他进程/线程无法获得锁,就会出现的死锁状况,一直阻塞在aquire()处

### 当一个锁对象已经被上锁, 试图再次加锁,  就会造成锁死.
from multiprocessing import Lock

def task1(loc):
    print('task1')
    loc.acquire()
    print('task1: 开始打印')
    time.sleep(random.randint(1,3))
    print('task1: 结束打印')
    loc.release()

def task2(loc):
    print('task2')
    loc.acquire()                        # 第一层锁  
    loc.acquire()                        #第二层锁, 试图再次加锁,由于锁对象已经被占用(已经锁上了,还没有释放)再次上锁,就会造成锁死 (程序被卡主)~~~
    loc.release()
    print('task2: 开始打印')
    time.sleep(random.randint(1,3))
    print('task2: 结束打印')
    loc.release()


def task3(loc):
    print('task3')
    loc.acquire()
    print('task3: 开始打印')
    time.sleep(random.randint(1,3))
    print('task3: 结束打印')
    loc.release()


if __name__ == '__main__':
    loc=Lock()
    p1=Process(target=task1,args=(loc,)).start()
    p2=Process(target=task2,args=(loc,)).start()
    p3=Process(target=task3,args=(loc,)).start()

 ​ ​  案例:模拟抢票(多进程串行执行够任务.)

###  db.json 自己提前创建好
 with open('db.json', 'w', encoding='utf-8') as f:
        dic={'count':1}
       json.dump(dic, f)
    

### searc方法 打印剩余票数
def search():
    time.sleep(random.random())
    with open('db.json', encoding='utf-8') as f:
        dic = json.load(f)
        print(f'剩余票数:{dic["count"]}')


        
### 模拟多用户(多进程)抢票
def get():
    with open('db.json', encoding='utf-8') as f:
        dic = json.load(f)
    time.sleep(random.randint(0, 2))
    if dic['count'] > 0:
        dic['count'] -= 1
        with open('db.json', 'w', encoding='utf-8') as f:
            json.dump(dic, f)
        print(f'用户:{os.getpid()} ,购买成功~~')
    else:
        print(f'{os.getpid()} 没票了~~~~')


def task(lock):
    search()		
    lock.acquire() #给抢票购买, 加锁	. 既保证了数据的安全性,也保证了数据公平性
    get()
    lock.release()# 解锁


if __name__ == '__main__':
    lock = Lock()
    for i in range(5):
        p1 = Process(target=task, args=(lock,))	# 模拟5个用户进程
        p1.start()

二丶进程之间的通信: 队列.

含义:

​ ​ ​ 队列就是存在于内存中一个数据容器,一种特殊的线性表

​ ​ ​ 特点:先进先出(FIFO),Queue是多进程安全的队列,自动加锁,自动阻塞

目的:

​ ​ ​ 实现进程之间的通信

multiprocessing模块:

​ ​ ​ 模块支持两种形式:队列(自动加锁,自动阻塞)和管道(需要自己手动加锁),这两种方式都是用于进程间消息传递

### 队列Queue基本用法
    # 1.放值  put(值,block=False,timeout=X) block是否阻塞, timeout是否超时
    # 2.取值	get()	#get完队列里的所有数据时,程序卡出. 如果队列中有新的数据时,会继续执行
    # 3.maxsize 队列中允许最大存放数
    # 4.empty():调用此方法时q为空则返回True,该结果不可靠,
    # 5.full():调用此方法时q已满则返回True,该结果不可靠,
    # 6.qsize():返回队列中目前项目的正确数量,结果也不可靠,
    # 7.get_nowait()	 和 put_nowait() 同 block=False 不阻塞,不等待
    
from multiprocessing import Queue
q=Queue(3) 			# 设置队列里最大的元素个数
q.put('1')
q.put('2')
q.put('3')
q.put('4') 			# 夯住 ,只能放3个,不允许继续添加,程序卡在此处. 下面的程序不再执行

print(q.get())
print(q.get())
print(q.get())
print(q.get())		#### 夯住 只能取3个,程序卡在此处. 如果队列中有新的数据时,会继续执行


# 原理同上
# timeout 超时抛出异常(Full or  Empty) , block默认阻塞,block=Fasle不会阻塞
q=Queue(3)
q.put(1)
q.put(3)
q.put(2)
q.put(4,block=False,timeout=3)

print(q.get())
print(q.get())
print(q.get())
q.get(block=False,timeout=3)

三丶进程之间的通信实例

###  队列模拟进程之间 ,30个进程,队列只获取10个.

from multiprocessing import Process
from multiprocessing import Queue
import os

def task(q):
    try:
        q.put(os.getpid(),block=False)
    except Exception:
        return

if __name__ == '__main__':
    q=Queue(10)			# 生成Queue队列
    for i in range(30):			
        Process(target=task,args=(q,)).start()

    for j in range(1,11):
        print(f'第{j}用户:{q.get()}')

四丶生产者消费者模型(常用于并发)

含义:

​ ​ ​ 完完全全的实现进程之间的通信.有三个主体:生产者,消费者,存数据的容器(队列).

好处:

​ ​ ​ 1.平衡生产者与消费者之间的速度差
​ ​ ​ 2.程序解开耦合
​ ​ ​ 3.支持并发

构成:

​ ​ ​  三二一原则:
​ ​ ​  ​ ​ ​  三种关系 (生产者与生产者(互斥) , 生产者与消费者(同步与互斥) ,消费者与消费者(互斥))
​ ​ ​  ​ ​ ​  两个角色(生产者和消费者)
​ ​ ​  ​ ​ ​  一个场所 (队列缓冲区)

No BB see 代码:

# -*-coding:utf-8-*-
# Author:Ds

###  合理的去调控多个进程去生成数据以及提取数据,中间有个必不可少的环节容器队列.

from multiprocessing import Process
from multiprocessing import Queue
import time
import random

# 生产者
def Producer(name,q):
    for el in range(1,11):
        time.sleep(random.randint(1,2)) # 随机
        res=f'生产者:{name}   ,   生产的---第 {el} 号包子 '
        q.put(res)      #放到队列容器中
        print(f'\033[0;35m  {res} \033[0m')
# 消费者
def Consumer(name,q):
    while 1:                                    # 循环从队列里面取出数据,    如果队列中不存在,就会卡住,等待数据. 一但队列中有了数据,等待的消费者进程就会获得数据.
        try:
            time.sleep(random.randint(1,3))        # 增加随机性
            ret=q.get(timeout=5)                        # 从队列中取数据,并设置超时. 一旦生成者不再往队列中添加数据,5秒之后消费者直接抛出empty异常
            print(f'消费者{name}: 吃了 {ret}')
        except Exception:
            return


###
if __name__ == '__main__':

    q=Queue()  # 实例化队列对象

    # 2 生产者对象
    for i in range(1,3):
        Process(target=Producer,args=(i,q)).start()        # args() 接收参数队列对象,确保使用的是同一个队列


    # 3 个消费者对象
    for j in range(1,4):
        Process(target=Consumer,args=(j,q)).start()

posted @ 2019-07-23 16:53  染指未来  阅读(418)  评论(0编辑  收藏  举报