PAT乙级1019.数字黑洞(20 分)

1019 数字黑洞(20 分)

给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。

输入格式:

输入给出一个 (0,10^4​​) 区间内的正整数 N。

输出格式:

如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。

输入样例 1:

6767

输出样例 1:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174

输入样例 2:

2222

输出样例 2:

2222 - 2222 = 0000

  光荣地把所有的坑都踩了一遍,注意输入的数要做处理,确保为四位数,排序使用sort函数防止超时问题,
输入的数用string类型存储,减法运算时,将其转换为整型,得到的结果再次转换为四位数的字符串,输出
如果差为0000或者6174才可以终止下一次循环,如果输入的数是这两个数,还是要进行减法运算,这里决定了
条件判断的位置,string类型的输出使用cout
#include<iostream>
#include<stdlib.h>
#include<algorithm>
#include<string>
using namespace std;
bool comp(char m, char n)
{
    if (m > n)
        return true;
    else
        return false;
}
int main()
{
    string a, b, c;
    cin >> c;
    c.insert(0, 4 - c.length(), '0');
    while (true)
    {
        a = c;
        b = c;
        sort(a.begin(), a.end(), comp);
        sort(b.begin(), b.end());
        int x = stoi(a);
        int y = stoi(b);
        int z = x - y;
        c = to_string(z);
        c.insert(0, 4 - c.length(), '0');
        cout << a << " - " << b << " = " << c << endl;
        if (z == 0 || z == 6174)
            break;
    }
    system("pause");
    return 0;
}

 


posted @ 2018-08-22 20:06  hui666  阅读(1151)  评论(0编辑  收藏  举报