Hessian Matrix
函数\(f\)的Hessian矩阵由是由它的二阶偏导数组成的方阵
\[H = \begin{bmatrix}
\dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex]
\dfrac{\partial^2 f}{\partial x_2\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_2^2} & \cdots & \dfrac{\partial^2 f}{\partial x_2\,\partial x_n} \\[2.2ex]
\vdots & \vdots & \ddots & \vdots \\[2.2ex]
\dfrac{\partial^2 f}{\partial x_n\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}.
\]
\[h_{ij} = \frac {\partial^2f}{\partial x_i \partial x_j}
\]
当\(f\)为连续函数时, 高阶偏导数的值与偏导顺序无关. 所以Hessian Matrix是对称阵.
(END)
Daniel的学习笔记
浙江大学计算机专业15级硕士在读, 方向: Machine Learning, Deep Learning, Computer Vision.
blog内容是我个人的学习笔记, 由于个人水平限制, 肯定有不少错误或遗漏. 若发现, 欢迎留言告知, Thanks!
Daniel的学习笔记
浙江大学计算机专业15级硕士在读, 方向: Machine Learning, Deep Learning, Computer Vision.
blog内容是我个人的学习笔记, 由于个人水平限制, 肯定有不少错误或遗漏. 若发现, 欢迎留言告知, Thanks!