Spark GraphX 的数据可视化

概述

Spark GraphX 本身并不提供可视化的支持, 我们通过第三方库 GraphStream 和 Breeze 来实现这一目标

详细

Spark 和 GraphX 对并不提供对数据可视化的支持, 它们所关注的是数据处理。但是, 一图胜千言, 尤其是在数据分析时。接下来, 我们构建一个可视化分析图的 Spark 应用。需要用到的第三方库有:

  • GraphStream: 用于画出网络图

  • BreezeViz: 用户绘制图的结构化信息, 比如度的分布。

这些第三方库尽管并不完美, 而且有些限制, 但是相对稳定和易于使用。

一、安装 GraphStream 和 BreezeViz

因为我们只需要绘制静态网络, 所以下载 core 和 UI 两个 JAR 就可以了。

  • gs-core-1.2.jar(请看下载的压缩包里的jars.zip)

  • gs-ui-1.2.jar(请看下载的压缩包里的jars.zip

breeze 也需要两个 JAR:

  • breeze_2.10-0.9.jar(请看下载的压缩包里的jars.zip

  • breeze-viz_2.10-0.9.jar(请看下载的压缩包里的jars.zip

由于 BreezeViz 是一个 Scala 库, 它依赖了另一个叫做 JfreeChart 的 Java 库, 所以也需要安装:

  • jcommon-1.0.16.jar(请看下载的压缩包里的jars.zip

  • jfreechart-1.0.13.jar(请看下载的压缩包里的jars.zip

可以到 maven 仓库去下载, 下载完成后放到项目根目录下 lib 文件夹下即可. 用 sbt 来管理依赖比较方便, 所以我使用 sbt 来安装这些依赖:

// Graph Visualization
// https://mvnrepository.com/artifact/org.graphstream/gs-core
libraryDependencies += "org.graphstream" % "gs-core" % "1.2"
// https://mvnrepository.com/artifact/org.graphstream/gs-ui
libraryDependencies += "org.graphstream" % "gs-ui" % "1.2"

// https://mvnrepository.com/artifact/org.scalanlp/breeze_2.10
libraryDependencies += "org.scalanlp" % "breeze_2.11" % "0.12"
// https://mvnrepository.com/artifact/org.scalanlp/breeze-viz_2.11
libraryDependencies += "org.scalanlp" % "breeze-viz_2.11" % "0.12"

// https://mvnrepository.com/artifact/org.jfree/jcommon
libraryDependencies += "org.jfree" % "jcommon" % "1.0.24"

// https://mvnrepository.com/artifact/org.jfree/jfreechart
libraryDependencies += "org.jfree" % "jfreechart" % "1.0.19"

二、画图

一、导入

在导入环节需要注意的是, 如果是与 GraphX 的 Graph 一同使用, 在导入时将 graphstream 的 Graph 重命名为 GraphStream, 否则都叫 Graph 会有命名空间上的冲突。当然, 如果只使用一个就无所谓了。

import org.graphstream.graph.{Graph => GraphStream}

二、绘制

首先是使用 GraphX 加载一个图, 然后将这个图的信息导入 graphstream 的图中进行可视化. 具体是:

1、创建一个 SingleGraph 对象, 它来自 graphstream:

val graph: SingleGraph = new SingleGraph("visualizationDemo")

2、我们可以调用 SingleGraph 的 addNode 和 addEdge 方法来添加节点和边, 也可以调用 addAttribute 方法来给图, 或是单独的边和顶点来设置可视化属性. graphsteam API 非常好的一点是, 它将图的结构和可视化用一个类 CSS 的样式文件完全分离了开来, 我们可以通过这个样式文件来控制可视化的方式. 比如, 我们新建一个 stylesheet 文件并放到用户目录下的 style 文件下面:

node {
   fill-color: #a1d99b;
   size: 20px;
   text-size: 12;
   text-alignment: at-right;
   text-padding: 2;
   text-background-color: #fff7bc;
}
edge {
   shape: cubic-curve;
   fill-color: #dd1c77;
   z-index: 0;
   text-background-mode: rounded-box;
   text-background-color: #fff7bc;
   text-alignment: above;
   text-padding: 2;
 }

上面的样式文件定义了节点与边的样式, 更多内容可见其官方文档.

准备好样式文件以后, 就可以使用它:

// Set up the visual attributes for graph visualization
graph.addAttribute("ui.stylesheet","url(file:/home/xlc/style/stylesheet)")
graph.addAttribute("ui.quality")
graph.addAttribute("ui.antialias")

ui.quality 和 ui.antialias 属性是告诉渲染引擎在渲染时以质量为先而非速度。 如果不设置样式文件, 顶点与边默认渲染出来的效果是黑色。

3、加入节点和边。将 GraphX 所构建图的 VertexRDD 和 EdgeRDD 里面的内容加入到 GraphStream 的图对象中:

// Given the egoNetwork, load the graphX vertices into GraphStream
for ((id,_) <- egoNetwork.vertices.collect()) {
 val node = graph.addNode(id.toString).asInstanceOf[SingleNode]
}
// Load the graphX edges into GraphStream edges
for (Edge(x,y,_) <- egoNetwork.edges.collect()) {
 val edge = graph.addEdge(x.toString ++ y.toString, x.toString, y.toString, true).asInstanceOf[AbstractEdge]
}

加入顶点时, 只需要将顶点的 vertex ID 转换成字符串传入即可。

对于边, 稍显麻烦。addEdge 的 API 文档在 这里, 我们需要传入 4 个参数。第一个参数是每条边的字符串标识符, 由于在 GraphX 原有的图中并不存在, 所以我们需要自己创建。最简单的方式是将这条边的两个端点的 vertex ID 连接起来。

注意, 在上面的代码中, 为了避免我们的 scala 代码与 Java 库 GraphStream 互用上的一些问题, 采用了小的技巧。在 GraphStream 的 org.graphstream.graph.implementations.AbstractGraph API o文档中, addNode 和 addEdge 分别返回顶点和边。但是由于 GraphStream 是一个第三方的 Java 库, 我们必须强制使用 asInstanceOf[T], 其中 [T] 为 SingleNode 和 AbstractEdge, 作为 addNode 和 addEdge 的返回类型。 如果我们漏掉了这些显式的类型转换, 可能会得到一个奇怪的异常:

java.lang.ClassCastException:
org.graphstream.graph.implementations.SingleNode cannot
be cast to scala.runtime.Nothing$

4、显示图像

graph.display()

5、部分示例代码:

def main(args: Array[String]): Unit = {

    val sparkConf = new SparkConf()
      .setAppName("GraphStreamDemo")
      .set("spark.master", "local[*]")

    val sc = new SparkContext(sparkConf)

    val graph: SingleGraph = new SingleGraph("graphDemo")

    val vertices: RDD[(VertexId, String)] = sc.parallelize(List(
      (1L, "A"),
      (2L, "B"),
      (3L, "C"),
      (4L, "D"),
      (5L, "E"),
      (6L, "F"),
      (7L, "G")))

    val edges: RDD[Edge[String]] = sc.parallelize(List(
      Edge(1L, 2L, "1-2"),
      Edge(1L, 3L, "1-3"),
      Edge(2L, 4L, "2-4"),
      Edge(3L, 5L, "3-5"),
      Edge(3L, 6L, "3-6"),
      Edge(5L, 7L, "5-7"),
      Edge(6L, 7L, "6-7")))

三、运行效果与文件截图

1、运行效果:

至此, 一个简单的示例完成. 更多实用的内容可自行研究。

2、文件截图:

blob.png

四、其他补充

目前, 如果不消耗大量的计算资源, 对于大规模的网络图绘制仍然缺乏一个有力的工具. 类似的工具有:

  • snap: 基于 GraphViz 引擎。

  • Gephi: 它是交互式的可视化工具, 尽管它有写多级布局和内置 3D 渲染引擎这样的特色, 但是仍然有些高 CPU 和内存的需求。

另外, zeepelin 也可与 Spark 集成, 可自行了解。

注:本文著作权归作者,由demo大师发表,拒绝转载,转载需要作者授权

posted on 2018-02-28 00:05  demo例子集  阅读(766)  评论(0编辑  收藏  举报

导航