Keras中的Masking和Padding
对于变长特征编码,我们往往需要用到此。它们的作用是:
- Padding:将本来不相同的样本填充到相同的长度,以便于后面的处理,我们一般使用0做填充
- Mask:告诉网络层那些是真正的数据,哪些是填充的“0”,从而帮助网络层更好地计算
目的:提升序列模型的精度和准确率
使用方法如下:
# 第一步,将数据padding raw_inputs = [[1,2],[3,4,5],[6,7,8,9,10,100,1000,1,1,1,1,1]] inputs = keras.preprocessing.sequence.pad_sequences(raw_inputs, padding="post", value=0) print(inputs, type(inputs))
# 第二步,对无效数据做Mask,添加一个keras.layers.Masking层 input_x = Input(shape=(12,), name="in") masking_layer = Masking(input_shape=(12,), mask_value=0) input_masked = masking_layer(input_x) embedd = Embedding(10000, 32)(input_masked) avg_layer = GlobalAveragePooling1D()(embedd) dense_layer = Dense(64, activation="relu")(avg_layer) out_y = Dense(1, activation="sigmoid")(dense_layer) model = Model(inputs=input_x, outputs=out_y) model.summary()
# 不做掩码 input_x = Input(shape=(12,), name="in") embedd = Embedding(10000, 32)(input_x) avg_layer = GlobalAveragePooling1D()(embedd) dense_layer = Dense(64, activation="relu")(avg_layer) out_y = Dense(1, activation="sigmoid")(dense_layer) model2 = Model(inputs=input_x, outputs=out_y) model2.summary()
# seq方式测试 model3 = tf.keras.Sequential([ tf.keras.layers.Masking(input_shape=(12,)), tf.keras.layers.Embedding(10000, 32), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model3.summary()
对比结果展示:
时刻记着自己要成为什么样的人!