Keras 单机多卡训练模型

注意:此模式下不能用fit_generator() 方式训练

复制代码
""" GPU test
"""
import os
import sys
os.system('pip install -i https://pypi.tuna.tsinghua.edu.cn/simple keras==2.3.1')
from tensorflow.keras import Sequential
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input,Dense
from tensorflow.keras import layers
from tensorflow.keras.callbacks import ModelCheckpoint,EarlyStopping
import tensorflow as tf
from tensorflow import keras
import numpy as np
import pickle
import time

checkpoint_save_dir = "/models/embedding_recall/ckpt"
best_model_name = "best_model.hdf5"
if not os.path.exists(checkpoint_save_dir):
    os.makedirs(checkpoint_save_dir)

with open(r"/models/embedding_recall/resources/minist.pkl","rb") as fr:
    data = pickle.load(fr)
    
def make_or_restore_model():
    # Either restore the latest model, or create a fresh one
    # if there is no checkpoint available.
    checkpoints = [checkpoint_dir + "/" + name for name in os.listdir(checkpoint_dir)]
    if checkpoints:
        latest_checkpoint = max(checkpoints, key=os.path.getctime)
        print("Restoring from", latest_checkpoint)
        return keras.models.load_model(latest_checkpoint)
    print("Creating a new model")
    return get_compiled_model()

def get_compiled_model():
    inputs = Input(shape=(784,))
    inputs.shape
    inputs.dtype
    dense = Dense(64, activation="relu")
    x = dense(inputs)
    x = Dense(64, activation="relu")(x)
    outputs = Dense(10)(x)
    model = Model(inputs=inputs, outputs=outputs, name="my_model")
    model.compile(
    loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer = keras.optimizers.RMSprop(),
    metrics = ["accuracy"],)
    return model

def make_or_restore_model(checkpoint_save_dir, model_name):
    # Either restore the latest model, or create a fresh one
    # if there is no checkpoint available.
    if checkpoint_save_dir:
        latest_checkpoint = os.path.join(checkpoint_save_dir, model_name)
        print("Restoring from", latest_checkpoint)
        return keras.models.load_model(latest_checkpoint)
    else:
        return None

def run_training(epochs):
    strategy = tf.distribute.MirroredStrategy()
    print("Number of devices:{}".format(strategy.num_replicas_in_sync))
    with strategy.scope():
        model = get_compiled_model()
    (x_train, y_train),(x_test, y_test) = data[0],data[1]
    x_train = x_train.reshape(60000, 784).astype("float32")/255
    x_test = x_test.reshape(10000, 784).astype("float32")/255
    
    early_stop = EarlyStopping(monitor='loss', patience=3, verbose=1)
    checkpoint = ModelCheckpoint(os.path.join(checkpoint_save_dir, best_model_name),
                             monitor='loss', verbose=1, save_best_only=True, mode='min')
    
    callbacks_list = [checkpoint, early_stop]
    t1 = time.time()
    history = model.fit(x_train, y_train, batch_size=100, epochs=epochs, callbacks=callbacks_list)
    t2 = time.time()
#     test_scores = model.evaluate(x_test, y_test, batch_size=100,verbose=2)
#     print("test loss:{}".format(test_scores[0]))
#     print("test acc:{}".format(test_scores[1]))
#     print("total spent:{}".format(t2-t1))

def continue_training(epochs):
    strategy = tf.distribute.MirroredStrategy()
    print("Number of devices:{}".format(strategy.num_replicas_in_sync))
#     with strategy.scope():
    model = make_or_restore_model(checkpoint_save_dir, best_model_name)
    (x_train, y_train),(x_test, y_test) = data[0],data[1]
    x_train = x_train.reshape(60000, 784).astype("float32")/255
    x_test = x_test.reshape(10000, 784).astype("float32")/255
    
    early_stop = EarlyStopping(monitor='loss', patience=3, verbose=1)
    checkpoint = ModelCheckpoint(os.path.join(checkpoint_save_dir, best_model_name),
                             monitor='loss', verbose=1, save_best_only=True, mode='min')
    
    callbacks_list = [checkpoint, early_stop]
    t1 = time.time()
    history = model.fit(x_train, y_train, batch_size=100, epochs=epochs, callbacks=callbacks_list)
    t2 = time.time()
    
run_training(epochs=5)
# continue_training(epochs=100)
复制代码

 

posted @   今夜无风  阅读(395)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
点击右上角即可分享
微信分享提示