括号生成实现

 

问题:

# 数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。 
#
#
#
# 示例 1:
#
#
# 输入:n = 3
# 输出:["((()))","(()())","(())()","()(())","()()()"]

实现:

# leetcode submit region begin(Prohibit modification and deletion)
class Solution:
    def generateParenthesis(self, n: int) -> List[str]:
        res = []
        def _recursion(res, n, left, right, s):
            if len(s) == 2 * n:
                res.append(s)
                return
            if left < n:
                _recursion(res, n, left + 1, right, s + '(')
            if left > right:
                _recursion(res, n, left, right + 1, s + ')')
        _recursion(res, n, 0, 0, '')
        return res
# leetcode submit region end(Prohibit modification and deletion)

 方法二:动态规划

动态规划分三步走:

第一步:定义状态 dp[i]:使用 i 对括号能够生成的组合
第二步:状态转移方程:
  1)i 对括号的一个组合,在 i-1 对括号的基础上得到,这是 状态转移方程 的基础;
  2)i 对括号的一个组合,一定以左括号 ( 为开始。所以可以想象成在一堆左括号中插入右括号,以此得到所有组合
  枚举的方式就是枚举左括号 ( 和右括号)中间可能的合法的括号对数,而剩下的合法的括号对数在与第一个左括号( 配对的右括号的后面,这就用到了以前的状态
  状态转移方程:
  dp[i] = “(” + dp[可能的括号对数] + “)” + dp[剩下的括号对数]
  整理得:
  dp[i] = “(” + dp[j] + “)” + dp[i-1-j] , j = 0, 1, …, i - 1
第三步:思考初始状态和输出:
  初始状态:因为我们需要 0 对括号这种状态,因此状态数组 dp 从 0 开始,0 个括号当然就是 [""]
  输出:dp[n]

def generateParenthesis(n):
    if not n:
        return []
    dp = [None for _ in range(n+1)]
    dp[0] = [""]
    for i in range(1, n+1):
        tmp = []
        for j in range(i):
            left = dp[j]
            right = dp[i-1-j]
            for s1 in left:
                for s2 in right:
                    tmp.append("(" + s1 + ")" + s2)
        dp[i] = tmp
    return dp[n]

 

posted @ 2021-05-19 23:40  今夜无风  阅读(87)  评论(0编辑  收藏  举报