多进程提速
方式一:multiprocessing.Process
def worker(procnum, return_dict): '''worker function''' print str(procnum) + ' represent!' return_dict[procnum] = procnum if __name__ == '__main__': manager = Manager() return_dict = manager.dict() jobs = [] for i in range(5): p = multiprocessing.Process(target=worker, args=(i,return_dict)) jobs.append(p) p.start() for proc in jobs: proc.join() # 最后的结果是多个进程返回值的集合 print return_dict.values()
方式二:Process
pool = Pool(4) manager = Manager() return_dict = manager.dict() jobs = [] q = Queue() with open(data_path, 'r', encoding='utf8') as fr: content = fr.readlines() for d in content[:100]: q.put(d) print('数据放入队列完毕') for i in range(5): p = Process(target=func, args=(q, return_dict)) jobs.append(p) p.start() for proc in jobs: proc.join() print(return_dict.values())
方式三:Pool
import multiprocessing import time def func(msg): print('hello :', msg, time.ctime()) time.sleep(2) print('end', time.ctime()) return 'done' + msg if __name__ == '__main__': pool = multiprocessing.Pool(2) result = [] for i in range(3): msg = 'hello %s' % i result.append(pool.apply_async(func=func, args=(msg,))) pool.close() pool.join() for res in result: print('***:', res.get()) # get()函数得出每个返回结果的值 print('All end--')
时刻记着自己要成为什么样的人!