StratifiedKFold实现分层抽样
当你要处理一个任务,比如说分类,手上就会有一批训练集和一批测试集,测试集使用来最终的评测。为了能更好的训练一个model并进行有效评估,首先要做的是将手头上的训练集划分出一个验证集,用以验证模型
之前的k折交叉验证没有考虑到标签分布的问题,或者干脆就random一批验证集,其实这样最终的模型会有隐患,科学的做法是:可以利用分层抽样进行划分,能够确保生成的训练集和验证集中的各个类别比例同原始训练集中保持一致,这样就不会产生生成的数据分布紊乱问题,大家可以借鉴使用。API用sklearn的:
from sklearn.model_selection import StratifiedKFold sfolder = StratifiedKFold(n_splits=3,random_state=24,shuffle=True)
时刻记着自己要成为什么样的人!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
2019-03-04 TensorRT下安装pycuda