torch.nn.Conv2d()使用
API
输入:[ batch_size, channels, height_1, width_1 ]
Conv2d输入参数:[ channels, output, height_2, width_2 ]
输出:[ batch_size,output, height_3, width_3 ]
实例:
def torch_practice(): x = torch.randn(2,1,16,4) conv = torch.nn.Conv2d(1, 32, (2,2)) res = conv(x) print(res.shape) if __name__ == '__main__': torch_practice()
输出:torch.Size([2, 32, 15, 3])
batch大小不变:2
输出通道加厚:32。由卷积核的通道数决定
卷积结果:[15,3]。计算公式,n-m+1, 16-2+1=15
时刻记着自己要成为什么样的人!