深度学习模型-快速构建词典和id的映射
直接上代码
from collections import Counter import numpy as np text = 'I love china. the dog on the ground' text = text.split() # print(text) vocab = dict(Counter(text).most_common(5)) vocab['<unk>'] = len(text) - np.sum(list(vocab.values())) id_to_word = [word for word in vocab.keys()] word_to_id = {word:i for i, word in enumerate(id_to_word)} print(word_to_id) # print(list(vocab.values()))
V2
from collections import Counter import numpy as np import pandas as pd import csv vocab_file = r"resources/vocab.txt" cut_num = 7 vocab_df = pd.read_csv(vocab_file, encoding='utf-8', sep='\t', header=None, quoting=csv.QUOTE_NONE) text = '我是中 国人' text = [e for e in text.strip().replace(" ","")] # data preprocess if len(text) > cut_num: text = text[:cut_num] else: text = text + ['<pad>']*(cut_num-len(text)) id_to_word = [word for word in vocab_df[0].tolist()] word_to_id = {word:i for i, word in enumerate(id_to_word)} text_encoded = [] for each in text: cur_id = word_to_id.get(each) if not cur_id: cur_id = word_to_id.get('<unk>') text_encoded.append(cur_id) print("text:{}\n{}".format(text, text_encoded))
时刻记着自己要成为什么样的人!