pytroch 掌握深度模型构建精髓
pytorch几十行代码搞清楚模型的构建和训练
import torch import torch.nn as nn N, D_in, H, D_out = 64, 1000, 100, 10 # data x = torch.randn(N, D_in) y = torch.randn(N, D_out) # mdoel define class TwoLayerNet(nn.Module): def __init__(self, D_in, H, D_out): # main layers super(TwoLayerNet, self).__init__() self.linear1 = nn.Linear(D_in, H) self.linear2 = nn.Linear(H, D_out) def forward(self, x): y_pred = self.linear2(self.linear1(x).clamp(min=0)) return y_pred # init model loss_fn = nn.MSELoss(reduction='sum') model = TwoLayerNet(D_in, H, D_out) optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) # training for i in range(500): # 1.forward pass y_pred = model(x) # 2.compute loss loss = loss_fn(y_pred, y) print(i, loss.item()) optimizer.zero_grad() # 3.backward pass loss.backward() # 4.weights update optimizer.step()
时刻记着自己要成为什么样的人!