torch.nn.Embedding
自然语言中的常用的构建词向量方法,将id化后的语料库,映射到低维稠密的向量空间中,pytorch 中的使用如下:
import torch import torch.utils.data as Data import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable word_to_id = {'hello':0, 'world':1} embeds = nn.Embedding(2, 10) hello_idx = torch.LongTensor([word_to_id['hello']]) # hello_idx = Variable(hello_idx) hello_embed = embeds(hello_idx) print(hello_embed) if __name__ == '__main__': pass
输出:
需要注意的几点:
1)id化后的数据需要查表构建词向量时,idx必须是Long型的tensor
2)查表操作embeds即可得出嵌入向量
时刻记着自己要成为什么样的人!
分类:
Pytorch
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)