注意力机制的命名实体识别
一、原有模型的架构
biLSTM + CRF
二、对原有模型加入注意力机制
LSTM输出层加入注意力,参考文章:《Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification》,该文章是用于文本实体关系分类的,其思想借用到本文
细节:
1)作者将前向和后向LSTM得到的特征,不是做拼接操作,而是元素点积
2)对该层结果加入注意力
3)获得句子的整体表示
4)最后放入分类器中,用于分类
三、流程图
四、移植到命名实体识别中
未完待续
时刻记着自己要成为什么样的人!
分类:
Deep Learning
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
2017-12-18 JSP学习_02