tensorflow的tile使用

当你需要按照矩阵维度复制数据时候,可以使用tensorflow的tile函数

a1 = tf.tile(a, [2, 2]) 表示把a的第一个维度复制两次,第二个维度复制2次。
注意使用tf.nn.softmax(r, axis=0),表示对每一列取softmax,一定要注意维度,axis=0表示对列取softmax,不然数据会出错
 1 def tensoflow_test():
 2     # 一个batch有20个样本,每个样本的长度为5,每一个为200维度
 3     lstm_outpus = tf.truncated_normal(shape=[2, 5, 4], mean=0, stddev=1)
 4     # 变形成二维
 5     lstm_o = tf.reshape(lstm_outpus, shape=[-1, 4])
 6     # 经过非线性
 7     M = tf.tanh(lstm_o)
 8     # 初始化权重信息
 9     w = tf.truncated_normal(shape=[4,1], mean=0, stddev=1)
10     # 权重tf.matmul(M, w)
11     r = tf.matmul(M, w)
12     a = tf.nn.softmax(r, axis=0)
13     alpha = tf.tile(a, (1, 4))
14     # attention_res = lstm_o * alpha
15 
16     # M = tf.reshape(t, shape=[-1, 200])
17     # o = tf.Variable(tf.truncated_normal([1, 200]), name='w', dtype=tf.float32)
18     # a = tf.Variable(tf.truncated_normal([2,3]), dtype=tf.float32)
19     # b = tf.Variable(tf.truncated_normal([2,3]), dtype=tf.float32)
20     # a_b = tf.multiply(a,b)
21     # # a_b = a * b
22     # w = tf.transpose(o)
23     # res = tf.matmul(M, w)
24     # res2 = tf.reshape(res, shape=[-1, 5])
25     # copy_res = tf.tile(res2, (3,1))
26     # init_op = tf.global_variables_initializer()
27 
28     with tf.Session() as sess:
29         # sess.run(init_op)
30         # print(sess.run(res))
31         # print(sess.run(res2))
32         # print(res2)
33         # print(sess.run(copy_res))
34         # print(copy_res)
35         # print(sess.run(lstm_o))
36         # print(sess.run(lstm_outpus))
37         # print(sess.run(w))
38         print(lstm_outpus)
39         print(lstm_o)
40         print(alpha)
41         # print(sess.run(lstm_outpus))
42         print(sess.run([a, alpha]))
43         # print(sess.run(alpha))
44         # print(sess.run(alpha))
45         # print(sess.run(attention_res))

 

posted @ 2018-12-17 17:18  今夜无风  阅读(1674)  评论(0编辑  收藏  举报