POJ 3641 Pseudoprime numbers (快速幂)
题意:给出a和p,判断p是否为合数,且满足a^p是否与a模p同余,即a^p%p与a是否相等
算法:筛法打1万的素数表预判p。再将幂指数的二进制形式表示,从右到左移位,每次底数自乘。
#include <cstdio> #include <cstring> typedef long long LL; int p[10010]; bool np[100010]; int cntp; void SievePrime(int n) { memset(np, true, sizeof(np)); np[0] = np[1] = false; for (int i = 2; i <= n; ++i) { if (np[i]) p[cntp++] = i; for (int j = i * 2; j <= n; j+=i) { np[j] = false; } } } LL Ksm(LL a, LL b, LL p) { LL ans = 1; while (b) { if (b & 1) { ans = (ans * a) % p; } a = (a * a) % p; b >>= 1; } return ans; } bool IsPrime(LL a) { if (a <= 100000) return np[a]; for (int i = 0; i < cntp; ++i) { if (a % p[i] == 0) return false; } return true; } int main() { SievePrime(100000); LL a, p; while (scanf("%lld%lld", &p, &a) != EOF && p) { if (IsPrime(p)) { printf("no\n"); } else { printf("%s\n", Ksm(a, p, p) == a ? "yes" : "no"); } } return 0; }