随笔分类 - SPSS
摘要:一、定义 现实生活中有很多数据的取值只有两类,如医学中的生与死、患病的有与无、性别中的男性和女性、产品的合格与不合格等。从这种二分类总体中抽取的所有可能结果,要么是对立分类中的这一类,要么是另一类,其频数分布称为二项分布。调用SPSS中的二项分布检验(Binomial)可对样本资料进行二项分布分析。 SPSS二项分布检验就是根据收集到的样本数据,推断总体分布是否服从某个指定的二项分布。其零假设是H0:样本来自的总体与所指定的某个二项分布不存在显著的差异。 SPSS中的二项分布检验,在样本小于或等于30时,按照计算二项分布概率的公式进行计算;样本数大于30时,计算的是Z统计量,认为在零假设...
阅读全文
摘要:一、定义 定义:单样本变量值的随机性检验是对某变量的取值出现是否随机进行检验,也称为游程检验(Run过程)。 单样本变量值的随机性检验是由Wald提出的,它的零假设为H0:总体某变量的变量值出现是随机的。 单样本变量值的随机性检验通过游程(Run)数来实现。所谓游程是样本序列中连续出现的变量值的次数。 在SPSS单样本变量值的随机性检验中,SPSS将利用游程构造Z统计量,并依据正态分布表给出对应的相伴概率值。如果相伴概率小于或等于用户的显著性水平α,则应拒绝零假设H0,认为样本值的出现不是随机的;如果相伴概率值大于显著性水平,则不能拒绝零假设H0,认为变量值的出现是随机的。二、实例 ...
阅读全文
摘要:在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。这可以通过绘制样本数据直方图的方法来进行粗略的判断。如果需要进行比较准确的判断,则需要使用非参数检验的方法。其中总体分布的卡方检验(也记为χ2检验)就是一种比较好的方法。一、定义 总体分布的卡方检验适用于配合度检验,是根据样本数据的实际频数推断总体分布与期望分布或理论分布是否有显著差异。它的零假设H0:样本来自的总体分布形态和期望分布或某一理论分布没有显著差异。 总体分布的卡方检验的原理是:如果从一个随机变量尤中随机抽取若干个观察样本,这些观察样本落在X的k个互不相交的子集中的观察频数服从一个...
阅读全文
摘要:一、定义 定义:单样本K-S检验是以两位前苏联数学家Kolmogorov和Smirnov命名的,也是一种拟合优度的非参数检验方法。单样本K-S检验是利用样本数据推断总体是否服从某一理论分布的方法,适用于探索连续型随机变量的分布形态。 单样本K-S检验可以将一个变量的实际频数分布与正态分布(Normal)、均匀分布(Uniform)、泊松分布(Poisson)、指数(Exponential)分布进行比较。其零假设H0为样本来自的总体与指定的理论分布无显著差异。 SPSS实现K-S检验的过程如下: (1)根据样本数据和用户的指定构造出理论分布,查分布表得到相应的理论累计概率分布函数F0(X...
阅读全文
摘要:近期很多人反映刚刚接手数据分析工作,不知道怎么来做一份数据日报,不知道取 哪些数据,关注哪些重点指标,事实上对于新手而言最好的办法就是去参考前辈和看看行业一些日报的形式,但是核心在于你的产品是页游,还是app,还是手 游,还是网站,还是开放平台,还是端游,或者是一款互联网应用,产品定位和属性决定了数据分析日报的形式和内容。今天要说的这些指标和内容,基本可以保证基本的日报数据需求,换句话这是要关注的一些方面,剩下的要根据你的产品来了,不全或者纰漏错误还请各位批评指正。在开始之前还要明确一点,仔细想清楚你的报告服务于谁,给谁看,怎么做怎么展现,都需要你自己来衡量,下面的一切都是一个基本的思路和例子
阅读全文
摘要:小白学数据分析--à数据指标累计用户数的使用累计用户数是指注册用户数的累计,即可以认为是新用户的累计。在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如:时间 注册用户数[新登用户] 累计注册用户数1日 100 1002日 120 2203日 110 330…那么这个指标究竟有什么用?以前作为我自己也没有想到什么比较好用的方式去分析这个数据,既然存在了这个指标,就有存在的价值。此处,我所提到的分 析思路和方法也是基于电商的一些分析方法,且对于累计用户数的分析,还具有延展性,能够完成一些更深入的分析,今天就简单的来说说这个指标的分析。可以想象的是,如果根据累
阅读全文
摘要:SPSS为我们提供了探索分析,所谓探索分析之所以是探索,是因为有时候我们对于变量的分布特点不是很清楚,探索的目的在于帮助我们完成以下的工作:识别数据:例如数据的分布形式、异常值、缺失值;正态性检验:服从正态分布的检验;方差齐性检验:不同数据组的方差是否相等。有关于方差齐性检验原理、正态分布这里不累述,这里主要介绍SPSS的探索分析使用。数据文件这里使用的文件是不同周期的充值用户的充值数据,这里主要是针对流失用户和活跃用户的充值数据。具体操作首先将源文件加载到SPSS中,选择菜单分析|描述统计|探索,如下图所示:之后弹出对话框如下:在该对话框中,有几个输入的位置:因变量:为我们要分析的目标变量,
阅读全文
摘要:几个常用的统计软件下载地址,比较经典的几个地址,希望对大家学习有所帮助,顺提醒一下:请不要用于商业用途,谢谢!说明:rayfile会弹出一些广告,天下没有免费的午餐。进入下面的地址,然后安装ta的客户端,然后就可以下载了统计软件SAS8.2(含EM)http://www.rayfile.com/files/e5b43ae3-87b1-11de-a861-0014221b798a/sas8.1简装版http://www.rayfile.com/zh-cn/files/18050a9e-5de9-11dd-b48f-001143e7b41c/SPSSv16.0免注册全模块版http://www.r
阅读全文
摘要:SPSSClementine是Spss公司收购ISL获得的数据挖掘工具。在Gartner的客户数据挖掘工具评估中,仅有两家厂商被列为领导者:SAS和SPSS。SAS获得了最高ability to execute评分,代表着SAS在市场执行、推广、认知方面有最佳表现;而SPSS获得了最高的completeness of vision,表明SPSS在技术创新方面遥遥领先。客户端基本界面 SPSS Clementine(在此简称clementine)在安装好后会自动启用服务,服务端的管理需要使用SPSS Predictive Enterprise Manager,在服务端clementine没有复杂
阅读全文
摘要:线性回归数据来自于国泰安数据服务中心的经济研究数据库。网址:http://www.gtarsc.com/p/sq/。数据名称为:全国各地区能源消耗量与产量,该数据的年度标识为2006年,地区包括我国30个省,直辖市,自治区(西藏地区无数据)。1.1 数据预处理数据预处理包括的内容非常广泛,包括数据清理和描述性数据汇总,数据集成和变换,数据归约,数据离散化等。本次实习主要涉及的数据预处理只包括数据清理和描述性数据汇总。一般意义的数据预处理包括缺失值填写和噪声数据的处理。于此我们只对数据做缺失值填充,但是依然将其统称数据清理。1.1.1 数据导入与定义单击“打开数据文档”,将xls格式的全国各地区
阅读全文
摘要:聚类分析是将物理或者抽象对象的集合分成相似的对象类的过程。本次实验我将对同一批数据做两种不同的类型的聚类;它们分别是系统聚类和K-mean聚类。其中系统聚类的聚类方法也采用3种不同方法,来考察对比它们之间的优劣。由于没有样本数据,因此不能根据其数据做判别分析。评价标准主要是观察各聚类方法的所得到的类组间距离和组内聚类的大小。分析数据依然采用线性回归所使用的标准化后的能源消费数据。1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。1.1.1 最短距离聚类法最短距离法聚类步骤如下:规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。开始每个样品
阅读全文
浙公网安备 33010602011771号