Tensorflow版Faster RCNN源码解析(TFFRCNN) (18) rpn_msr/anchor_target_layer_tf.py

本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记

---------------个人学习笔记---------------

----------------本文作者疆--------------

------点击此处链接至博客园原文------

 

1.anchor_target_layer(rpn_cls_score, gt_boxes, gt_ishard, dontcare_areas, im_info, _feat_stride = [16,], anchor_scales = [4 ,8, 16, 32])代码逻辑

调用(generate_anchors.py中)generate_anchors(...)产生9个base anchors--->

im_info = im_info[0]  # 取出第一张图像更新im_info?,存储该图像的宽、高和缩放因子,blobs['im_info']是什么内容?多少张图像???与imdb.roidb相关???--->

计算shifts偏移量,即在conv5_3 feature map各个位置相对于(0,0)位置(在scaled图像上)的距离,如[0,16,0,16],为什么不用2列表示,要用4列表示偏移?--->

在conv5_3 feature map各个位置利用shifts和9个base anchors产生total_anchors个anchors,计算anchors需对base anchors和shifts进行reshape,此处要用到Python的broadcast机制--->

剔除越界的anchors,而不是限制在图像边界(RPN训练时,与原文描述一致),inds_inside为对应anchors的索引,更新anchors = all_anchors[inds_inside, :]--->

产生anchors的labels(0表示负样本、1表示正样本、-1表示dontcare):首先以-1填充labels,调用bbox_overlaps(...)(utils/cython_bbox.so,由C编译)计算anchors与gt_boxes的overlaps,对于各anchor,若其与gt_boxes max IOU<0.3,则label置为0,将与各gt产生max IOU的anchor的label置为1,将各anchor与gt max IOU超过0.7的anchor的label置为1;调用bbox_intersections(...)(utils/cython_bbox.so,由C编译)计算dontcare_areas与anchors的交集,对于各anchor,若其与dontcare_areas交集和超过0.5,将其label置为-1;调用bbox_overlaps(...)(utils/cython_bbox.so,由C编译)计算gt_hardboxes与anchors的overlaps,对于各anchor,若其与gt_hardboxes max IOU超过0.1,将其label置为-1,此外,对于各gt_hardboxes,将与其有max IOU的anchor对应label置为-1--->

对正、负样本RPN进行采样,各取128个,若正样本不足128个,以负样本补足,其余anchors的label置为-1--->

调用_compute_targets(...)函数计算各anchors的回归目标值bbox_targets--->

创建bbox_inside_weights和bbox_outside_weights,对于正样本anchor,其值为[1, 1, 1, 1],其余anchor对应均为[0, 0, 0, 0],未知实际使用意义--->

调用_unmap(...)函数将data(labels、bbox_targets、bbox_inside_weights、bbox_outside_weights)的shape由(inds_inside,None)扩充为(total_anchors,None),扩充位置数据填入无效值--->

    # total_anchors为在conv5_3 feature map上产生的所有anchors(含超出图像边界的anchors)的数量
    # inds_inside为剔除越界anchors后的anchors索引
    labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
    bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
    bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)
    bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0)

labels、bbox_targets、bbox_inside_weights、bbox_outside_weights reshape成(1, height, width, A)或(1, height, width, A*4)并返回(即rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights)

# blobs['im_info']是什么内容?多少张图像???与imdb.roidb相关???
# 传入anchor_scales = [8, 16, 32]
# 为anchors产生标签(-1,0,1)rpn_labels、回归目标值rpn_bbox_targets以及
# rpn_bbox_inside_weights(各anchor的权重系数)、平衡bg/fg anchors的rpn_bbox_outside_weights
def anchor_target_layer(rpn_cls_score, gt_boxes, gt_ishard, dontcare_areas, im_info, _feat_stride = [16,], anchor_scales = [4 ,8, 16, 32]):
    """
    Assign anchors to ground-truth targets. Produces anchor classification labels and bounding-box regression targets.
    Parameters
    ----------
    rpn_cls_score: (1, H, W, Ax2) bg/fg scores of previous conv layer
    gt_boxes: (G, 5) vstack of [x1, y1, x2, y2, class]
    gt_ishard: (G, 1), 1 or 0 indicates difficult or not
    dontcare_areas: (D, 4), some areas may contains small objs but no labelling. D may be 0
    im_info: a list of [image_height, image_width, scale_ratios]
    _feat_stride: the downsampling ratio of feature map to the original input image
    anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16])
    ----------
    Returns
    ----------
    rpn_labels : (HxWxA, 1), for each anchor, 0 denotes bg, 1 fg, -1 dontcare
    rpn_bbox_targets: (HxWxA, 4), distances of the anchors to the gt_boxes(may contains some transform)
                            that are the regression objectives
    rpn_bbox_inside_weights: (HxWxA, 4) weights of each boxes, mainly accepts hyper param in cfg
    rpn_bbox_outside_weights: (HxWxA, 4) used to balance the fg/bg, beacuse the numbers of bgs and fgs mays significiantly different
    """
    # 在conv5_3 feature map(0,0)位置上产生9个base anchors
    _anchors = generate_anchors(scales=np.array(anchor_scales))
    _num_anchors = _anchors.shape[0]

    if DEBUG:
        print 'anchors:'
        print _anchors
        print 'anchor shapes:'
        print np.hstack((
            _anchors[:, 2::4] - _anchors[:, 0::4],
            _anchors[:, 3::4] - _anchors[:, 1::4],
        ))
        _counts = cfg.EPS
        _sums = np.zeros((1, 4))
        _squared_sums = np.zeros((1, 4))
        _fg_sum = 0
        _bg_sum = 0
        _count = 0

    # allow boxes to sit over the edge by a small amount
    _allowed_border =  0
    # map of shape (..., H, W)
    #height, width = rpn_cls_score.shape[1:3]
    # 取出第一张图像相关信息???
    im_info = im_info[0]

    # Algorithm:
    #
    # for each (H, W) location i
    #   generate 9 anchor boxes centered on cell i
    #   apply predicted bbox deltas at cell i to each of the 9 anchors
    # filter out-of-image anchors !!!!!!RPN训练阶段剔除越界anchor
    # measure GT overlap

    assert rpn_cls_score.shape[0] == 1, \
        'Only single item batches are supported'

    # map of shape (..., H, W)
    # conv5_3 feature map高和宽
    height, width = rpn_cls_score.shape[1:3]

    if DEBUG:
        print 'AnchorTargetLayer: height', height, 'width', width
        print ''
        print 'im_size: ({}, {})'.format(im_info[0], im_info[1])
        print 'scale: {}'.format(im_info[2])
        print 'height, width: ({}, {})'.format(height, width)
        print 'rpn: gt_boxes.shape', gt_boxes.shape
        print 'rpn: gt_boxes', gt_boxes

    # 产生conv5 feature map各个位置相对于(0,0)位置(在scaled图像上)的偏移量,如[0,16,0,16]
    # 1. Generate proposals from bbox deltas and shifted anchors
    shift_x = np.arange(0, width) * _feat_stride
    shift_y = np.arange(0, height) * _feat_stride
    shift_x, shift_y = np.meshgrid(shift_x, shift_y) # in W H order
    # K is H x W
    shifts = np.vstack((shift_x.ravel(), shift_y.ravel(),
                        shift_x.ravel(), shift_y.ravel())).transpose()
    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    A = _num_anchors
    K = shifts.shape[0]
    # 在conv5_3 feature map各个位置上产生所有anchors
    all_anchors = (_anchors.reshape((1, A, 4)) +
                   shifts.reshape((1, K, 4)).transpose((1, 0, 2)))
    all_anchors = all_anchors.reshape((K * A, 4))
    # 产生的anchors数量
    total_anchors = int(K * A)

    # 训练RPN阶段:剔除越界的anchors
    # only keep anchors inside the image
    inds_inside = np.where(
        (all_anchors[:, 0] >= -_allowed_border) &
        (all_anchors[:, 1] >= -_allowed_border) &
        (all_anchors[:, 2] < im_info[1] + _allowed_border) &  # width
        (all_anchors[:, 3] < im_info[0] + _allowed_border)    # height
    )[0]

    if DEBUG:
        print 'total_anchors', total_anchors
        print 'inds_inside', len(inds_inside)

    # keep only inside anchors
    anchors = all_anchors[inds_inside, :]
    if DEBUG:
        print 'anchors.shape', anchors.shape

    # label: 1 is positive, 0 is negative, -1 is dont care
    # 为anchors创建labels
    labels = np.empty((len(inds_inside), ), dtype=np.float32)
    labels.fill(-1)

    # overlaps between the anchors and the gt boxes
    # overlaps (ex, gt), shape is A x G
    # gt_boxes: (G, 5) vstack of [x1, y1, x2, y2, class]
    # bbox_overlaps(...)由C编译  overlaps.shape = (anchors.shape[0],gt_boxes[0])
    overlaps = bbox_overlaps(
        np.ascontiguousarray(anchors, dtype=np.float),
        np.ascontiguousarray(gt_boxes, dtype=np.float))
    argmax_overlaps = overlaps.argmax(axis=1)    # A  这里原代码注释的A是指anchor的数量,而不是9!
    # 取出各anchor与gt max IOU值
    max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]
    gt_argmax_overlaps = overlaps.argmax(axis=0) # G
    # 取出各gt与anchor max IOU值
    gt_max_overlaps = overlaps[gt_argmax_overlaps,
                               np.arange(overlaps.shape[1])]
    # 取出各gt与anchor得到max IOU值对应的anchor索引,该数组内元素可能重复
    gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]

    # 为各个anchor分配label
    # 该值表明:If an anchor statisfied by positive and negative conditions set to negative
    # 默认TRAIN.RPN_CLOBBER_POSITIVES = False
    if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:
        # assign bg labels first so that positive labels can clobber重写 them
        # 默认TRAIN.RPN_NEGATIVE_OVERLAP = 0.3
        labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0

    # fg label: for each gt, anchor with highest overlap
    labels[gt_argmax_overlaps] = 1
    # fg label: above threshold IOU
    # 默认TRAIN.RPN_POSITIVE_OVERLAP = 0.7
    labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1

    # 该值表明:If an anchor statisfied by positive and negative conditions set to negative
    # 默认TRAIN.RPN_CLOBBER_POSITIVES = False
    if cfg.TRAIN.RPN_CLOBBER_POSITIVES:
        # assign bg labels last so that negative labels can clobber positives
        labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0

    # preclude排除 dontcare areas
    if dontcare_areas is not None and dontcare_areas.shape[0] > 0:
        # intersec shape is D x A
        intersecs = bbox_intersections(
            np.ascontiguousarray(dontcare_areas, dtype=np.float), # D x 4
            np.ascontiguousarray(anchors, dtype=np.float) # A x 4 这里原代码注释的A是指anchor的数量,而不是9!
        )
        # 各anchor与所有dontcare_areas交集之和
        intersecs_ = intersecs.sum(axis=0) # A x 1
        # TRAIN.DONTCARE_AREA_INTERSECTION_HI = 0.5  与dontcare box交集之和阈值
        # label为-1表明该anchor为dontcare anchor
        labels[intersecs_ > cfg.TRAIN.DONTCARE_AREA_INTERSECTION_HI] = -1

    # preclude排除 hard samples that are highly occlusioned, truncated or difficult to see
    # 默认TRAIN.PRECLUDE_HARD_SAMPLES = True
    if cfg.TRAIN.PRECLUDE_HARD_SAMPLES and gt_ishard is not None and gt_ishard.shape[0] > 0:
        # 1 or 0 indicates difficult or not
        assert gt_ishard.shape[0] == gt_boxes.shape[0]
        gt_ishard = gt_ishard.astype(int)
        gt_hardboxes = gt_boxes[gt_ishard == 1, :]
        if gt_hardboxes.shape[0] > 0:
            # H x A
            hard_overlaps = bbox_overlaps(
                np.ascontiguousarray(gt_hardboxes, dtype=np.float), # H x 4  H指gt_hardboxes的数量
                np.ascontiguousarray(anchors, dtype=np.float)) # A x 4       这里的A是指anchor的数量,而不是9!
            # 各anchor与gt_hardboxes max IOU值
            hard_max_overlaps = hard_overlaps.max(axis=0)  # (A)
            # TRAIN.RPN_POSITIVE_OVERLAP = 0.7
            labels[hard_max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = -1
            # 各gt_hardboxes与anchor得到max IOU对应的anchor索引
            max_intersec_label_inds = hard_overlaps.argmax(axis=1) # H x 1
            labels[max_intersec_label_inds] = -1

    # 默认正(label为1)、负(lable为0)样本1:1采样,由TRAIN.RPN_FG_FRACTION控制
    # 若正样本anchor不足128个,则以负样本填充???
    # subsample positive labels if we have too many
    # 默认TRAIN.RPN_FG_FRACTION = 0.5、TRAIN.RPN_BATCHSIZE = 256
    num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE)
    fg_inds = np.where(labels == 1)[0]
    if len(fg_inds) > num_fg:
        disable_inds = npr.choice(
            fg_inds, size=(len(fg_inds) - num_fg), replace=False)
        labels[disable_inds] = -1

    # subsample negative labels if we have too many
    num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1)
    bg_inds = np.where(labels == 0)[0]
    if len(bg_inds) > num_bg:
        disable_inds = npr.choice(
            bg_inds, size=(len(bg_inds) - num_bg), replace=False)
        labels[disable_inds] = -1
        #print "was %s inds, disabling %s, now %s inds" % (
            #len(bg_inds), len(disable_inds), np.sum(labels == 0))

    # inds_inside为anchors数量,即上面提到的A
    bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32)
    # argmax_overlaps为各anchor与gt得到max IOU对应的gt索引
    bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])
    # bbox_inside_weights和bbox_outside_weights的实际意义???
    bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
    # 默认TRAIN.RPN_BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0)
    # 仅正样本有bbox_inside_weights和bbox_outside_weights权重系数,其余全0
    bbox_inside_weights[labels == 1, :] = np.array(cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS)
    bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
    # 默认TRAIN.RPN_POSITIVE_WEIGHT = -1.0
    if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0:
        # uniform weighting of examples (given non-uniform sampling)
        num_examples = np.sum(labels >= 0) + 1
        # positive_weights = np.ones((1, 4)) * 1.0 / num_examples
        # negative_weights = np.ones((1, 4)) * 1.0 / num_examples
        positive_weights = np.ones((1, 4))
        negative_weights = np.zeros((1, 4))
    else:
        assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
                (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))
        positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT /
                            (np.sum(labels == 1)) + 1)
        negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) /
                            (np.sum(labels == 0)) + 1)
    # 默认正样本anchor的bbox_outside_weights为[1, 1, 1, 1]  负样本anchor的bbox_outside_weights为[0, 0, 0, 0]
    bbox_outside_weights[labels == 1, :] = positive_weights
    bbox_outside_weights[labels == 0, :] = negative_weights

    if DEBUG:
        _sums += bbox_targets[labels == 1, :].sum(axis=0)
        _squared_sums += (bbox_targets[labels == 1, :] ** 2).sum(axis=0)
        _counts += np.sum(labels == 1)
        means = _sums / _counts
        stds = np.sqrt(_squared_sums / _counts - means ** 2)
        print 'means:'
        print means
        print 'stdevs:'
        print stds

    # map up to original set of anchors
    # total_anchors为在conv5_3 feature map上产生的所有anchors(含超出图像边界的anchors)的数量
    # inds_inside为剔除越界anchors后的anchors索引
    labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
    bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
    bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)
    bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0)

    if DEBUG:
        print 'rpn: max max_overlap', np.max(max_overlaps)
        print 'rpn: num_positive', np.sum(labels == 1)
        print 'rpn: num_negative', np.sum(labels == 0)
        _fg_sum += np.sum(labels == 1)
        _bg_sum += np.sum(labels == 0)
        _count += 1
        print 'rpn: num_positive avg', _fg_sum / _count
        print 'rpn: num_negative avg', _bg_sum / _count
    # labels
    #pdb.set_trace()
    # 对labels、bbox_targets、bbox_inside_weights、bbox_outside_weights进行reshape成(1, height, width, A或A*4)并返回
    # labels(即rpn_labels)、bbox_targets(rpn_bbox_targets)、bbox_inside_weights(即rpn_bbox_inside_weights)、bbox_outside_weights(即rpn_bbox_outside_weights)
    # 这里的A=9 不同于上面的A!!!
    labels = labels.reshape((1, height, width, A))
    rpn_labels = labels
    # bbox_targets
    bbox_targets = bbox_targets \
        .reshape((1, height, width, A * 4))
    rpn_bbox_targets = bbox_targets
    # bbox_inside_weights
    bbox_inside_weights = bbox_inside_weights \
        .reshape((1, height, width, A * 4))
    #assert bbox_inside_weights.shape[2] == height
    #assert bbox_inside_weights.shape[3] == width
    rpn_bbox_inside_weights = bbox_inside_weights
    # bbox_outside_weights
    bbox_outside_weights = bbox_outside_weights \
        .reshape((1, height, width, A * 4))
    #assert bbox_outside_weights.shape[2] == height
    #assert bbox_outside_weights.shape[3] == width
    rpn_bbox_outside_weights = bbox_outside_weights
    return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights

 

# -*- coding:utf-8 -*-
# Author: WUJiang
# 测试功能
# gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]


import numpy as np

a = np.array([
    [5, 2, 3, 4],
    [2, 7, 1, 6],
    [9, 1, 2, 5],
    [3, 1, 4, 7]
])

b = np.array([2, 2, 2, 7])
# 前面是第1维的坐标,后面是第2维的坐标
# (array([0, 1, 2, 3], dtype=int64), array([1, 0, 2, 3], dtype=int64)) print(np.where(a == b)) # [0 1 2 3] print(np.where(a == b)[0])

 

# -*- coding:utf-8 -*-
# Author: WUJiang
# 测试功能

import numpy as np

count = 5
data = np.array([
    [1, 2, 3, 4],
    [2, 6, 8, 0]
])
c = (count, ) + data.shape[1:]
# (5,4)
print(c)

2._unmap(data, count, inds, fill=0)

将data(如labels、bbox_targets、bbox_inside_weights、bbox_outside_weights)的shape由(inds_inside,None)扩充为(total_anchors,None),扩充位置数据填入无效值,被anchor_target_layer(...)函数调用

# 将data的shape由(inds_inside,None)扩充为(total_anchors,None),扩充位置数据填入无效值
# inds_inside(即inds)表示剔除越界anchors的索引、total_anchors(即count)为在conv5_3 feature map上产生的anchors的数量
def _unmap(data, count, inds, fill=0):
    """ Unmap a subset of item (data) back to the original set of items (of size count) """
    if len(data.shape) == 1:
        ret = np.empty((count, ), dtype=np.float32)
        ret.fill(fill)
        ret[inds] = data
    else:
        ret = np.empty((count, ) + data.shape[1:], dtype=np.float32)
        ret.fill(fill)
        ret[inds, :] = data
    return ret

3._compute_targets(ex_rois,gt_rois)

根据传入的anchors和gt boxes[:,:4]计算anchors回归目标值,被anchor_target_layer(...)调用

# 根据anchors和gt boxes[:,:4]计算anchors回归目标值
def _compute_targets(ex_rois, gt_rois):
    """Compute bounding-box regression targets for an image."""
    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 5
    return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)
posted @ 2019-08-13 11:59  JiangJ~  阅读(440)  评论(0编辑  收藏  举报