Tensorflow版Faster RCNN源码解析(TFFRCNN) (16) rpn_msr/generate_anchors.py

本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记

---------------个人学习笔记---------------

----------------本文作者疆--------------

------点击此处链接至博客园原文------

 

1.generate_anchors(base_size=16, ratios=[0.5, 1, 2],scales=2**np.arange(3, 6))

在scaled图像(即真正馈入网络的图像)(0,0)位置产生9个base anchors并返回,被rpn_msr/proposal_layer_tf.py中proposal_layer(...)函数调用

# ratios=[0.5, 1, 2]表示1:2, 1:1, 2:1
# scales = 2**np.arange(3, 6)表示(8,16,32)
def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
                     scales=2**np.arange(3, 6)):
    """
    Generate anchor (reference) windows by enumerating aspect ratios X
    scales wrt a reference (0, 0, 15, 15) window.
    """
   # 新建一个base数组 [0 0 15 15]
    base_anchor = np.array([1, 1, base_size, base_size]) - 1
   # 枚举各种纵横比,生成三个比例的anchor
    ratio_anchors = _ratio_enum(base_anchor, ratios)
  # [[-3.5 2. 18.5 13.]
  # [0. 0. 15. 15.]
  # [2.5 -3. 12.5 18.]]
    anchors = np.vstack([_scale_enum(ratio_anchors[i, :], scales)
                         for i in xrange(ratio_anchors.shape[0])])
    return anchors

2._whctrs(anchor)

获取anchor的宽、高、中心坐标并返回,被_ratio_enum(...)和_scale_enum(...)函数调用

# 获取anchor的宽、高、中心坐标
def _whctrs(anchor):
    """
    Return width, height, x center, and y center for an anchor (window).
    """
    w = anchor[2] - anchor[0] + 1
    h = anchor[3] - anchor[1] + 1
    x_ctr = anchor[0] + 0.5 * (w - 1)
    y_ctr = anchor[1] + 0.5 * (h - 1)
    return w, h, x_ctr, y_ctr

3._mkanchors(ws,hs,x_ctr,y_ctr)

由anchor的宽、高、中心点坐标获取anchor的左上、右下坐标信息,被_ratio_enum(...)和_scale_enum(...)函数调用

# 由anchor的宽、高、中心点坐标获取anchor的左上、右下坐标信息
def _mkanchors(ws, hs, x_ctr, y_ctr):
    """
    Given a vector of widths (ws) and heights (hs) around a center
    (x_ctr, y_ctr), output a set of anchors (windows).
    """
    # ws:(23 16 11)  hs:(12 16 22)
    # ws与hs维度都为(3,)  np.newaxis后变为(3,1)
    ws = ws[:, np.newaxis]
    hs = hs[:, np.newaxis]
    # 3个anchors左上、右下坐标
    anchors = np.hstack((x_ctr - 0.5 * (ws - 1),
                         y_ctr - 0.5 * (hs - 1),
                         x_ctr + 0.5 * (ws - 1),
                         y_ctr + 0.5 * (hs - 1)))
    '''
  [[-3.5 2. 18.5 13.]
   [0. 0. 15. 15.]
   [2.5 -3. 12.5 18.]]
     '''
    return anchors

4._ratio_enum(anchor,ratios)     

_enum表示枚举,由base anchor(即scaled图像中 [0, 0, 15, 15])计算其size,然后除以aspect ratios并开根号,得到三组宽、高值,并以base anchor中心为中心,以该3组宽、高值得到3个anchors并返回,被generate_anchors(...)调用

# 传入anchor为base_anchor [0, 0, 15, 15] ratios为[0.5, 1, 2]
def _ratio_enum(anchor, ratios):
    """
    Enumerate a set of anchors for each aspect ratio wrt an anchor.
    """
    # 获取base anchor(在scaled图像上的)宽、高、中心坐标
    w, h, x_ctr, y_ctr = _whctrs(anchor)
    # 计算一个基础的size 16*16=256
    size = w * h
    size_ratios = size / ratios  # 根据base anchor的size得到纵横比下的size分别为(512,256,128)
    ws = np.round(np.sqrt(size_ratios))  # (23 16 11)
    hs = np.round(ws * ratios)           # (12 16 22)
    anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
    # 3个(0,0)位置上的anchors
    return anchors

5._scale_enum(anchor,scales)

_enum表示枚举,以_ratio_enum(...)得到的3个anchor,得到其中心点和宽、高值,并将宽、高值与3个scale相乘(保持中心点不变),最终得到9个在scaled图像中(0,0)位置的base anchors,被generate_anchors(...)调用

def _scale_enum(anchor, scales):
    """
    Enumerate a set of anchors for each scale wrt an anchor.
    """
    # [[-3.5 2. 18.5 13.]
    # [0. 0. 15. 15.]
    # [2.5 -3. 12.5 18.]]
    # 得到_ratio_enum(...)得到的3个anchors中某个anchor的宽、高、中心点坐标
    w, h, x_ctr, y_ctr = _whctrs(anchor)   
    ws = w * scales   # scales=(8,16,32)
    hs = h * scales
    anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
    # 得到(0,0)位置的9个anchors
    return anchors

6.主函数

if __name__ == '__main__':
    import time
    t = time.time()   #返回当前时间戳
    a = generate_anchors()
    print time.time() - t
    print a
    from IPython import embed; embed()
posted @ 2019-08-11 23:28  JiangJ~  阅读(463)  评论(0编辑  收藏  举报