摘要:
星际争霸 II 是暴雪开发的一款真正的战略游戏,它是一个挑战,因为它从机器学习的角度展示了一些有趣的属性:实时、部分可观察性以及广阔的行动和观察空间。掌握游戏需要时间策略规划,实时控制宏观和微观层面,具有实时反击对手的特点。 在本文中,我们将介绍 StarCarft II Unplugged 论文 阅读全文
摘要:
大多数人都熟悉如何在图像、文本或表格数据上运行数据科学项目。但处理音频数据的样例非常的少见。在本文中,将介绍如何在机器学习的帮助下准备、探索和分析音频数据。简而言之:与其他的形式(例如文本或图像)类似我们需要将音频数据转换为机器可识别的格式。 音频数据的有趣之处在于您可以将其视为多种不同的模式: 可 阅读全文
摘要:
机器学习通常涉及在训练期间可视化和度量模型的性能。有许多工具可用于此任务。在本文中,我们将重点介绍 TensorFlow 的开源工具套件,称为 TensorBoard,虽然他是TensorFlow 的一部分,但是可以独立安装,并且服务于Pytorch等其他的框架。 什么是 TensorBoard? 阅读全文
摘要:
在本文中将介绍如何查找相似图像的理论基础并且使用一个用于查找商标的系统为例介绍相关的技术实现,本文提供有关在图像检索任务中使用的推荐方法的背景信息。 阅读本文后你将有能够从头开始创建类似图像的搜索引擎的能力。 图像检索(又名基于内容的图像检索Content-Based Image Retrieval 阅读全文
摘要:
分割给定图像中的不同对象一直是计算机视觉领域的一项非常重要的任务。多年来,我们已经看到像 Deeplab 这样的自编码器模型被用于语义分割。在所有分割模型中,仍然有一个名字居于首位那就是U-Net。U-Net 于 2018 年发布,从那时起它获得了巨大的普及,并以某种形式用于与分割相关的几个不同任务 阅读全文
摘要:
在文本自动理解的NLP任务中,命名实体识别(NER)是首要的任务。NER模型的作用是识别文本语料库中的命名实体例如人名、组织、位置、语言等。 NER模型可以用来理解一个文本句子/短语的意思。它可以识别文本中可能代表who、what和whom的单词,以及文本数据所指的其他主要实体。 在本文中,将介绍对 阅读全文
摘要:
可视化有助于解释和理解深度学习模型的内部结构。通过模型计算图的可视化可以弄清楚神经网络是如何计算的,对于模型的可视化主要包括以下几个方面: 模型有多少层 每层的输入和输出形状 不同的层是如何连接的? 每层使用的参数 使用了不同的激活函数 本文将使用 Keras 和 PyTorch 构建一个简单的深度 阅读全文
摘要:
在本文中,首先简要解释一下 混合密度网络 MDN (Mixture Density Network)是什么,然后将使用Python 代码构建 MDN 模型,最后使用构建好的模型进行多元回归并测试效果。 回归 “回归预测建模是逼近从输入变量 (X) 到连续输出变量 (y) 的映射函数 (f) [... 阅读全文
摘要:
机器学习算法通常使用例如 kFold等的交叉验证技术来提高模型的准确度。在交叉验证过程中,预测是通过拆分出来的不用于模型训练的测试集进行的。这些预测被称为折外预测(out-of-fold predictions)。折外预测在机器学习中发挥着重要作用,可以提高模型的泛化性能。 在本文中,将介绍机器学习 阅读全文
摘要:
快速回顾集成方法中的软投票和硬投票 集成方法是将两个或多个单独的机器学习算法的结果结合在一起,并试图产生比任何单个算法都准确的结果。 在软投票中,每个类别的概率被平均以产生结果。例如,如果算法 1 以 40% 的概率预测对象是一块岩石,而算法 2 以 80% 的概率预测它是一个岩石,那么集成将预测该 阅读全文