摘要:
有关遗传算法最新发展的4篇论文推荐 1、A GPU accelerated Genetic Algorithm for the Construction of Hadamard Matrices Andras Balogh, Raven Ruiz 这篇论文使用遗传算法来构建Hadamard矩阵。生成 阅读全文
摘要:
当我们对数据建模时,首先应该建立一个标准基线方案,然后再通过优化对该方案进行修改。在项目的第一部分中,我们必须要投入时间来理解业务需求并进行充分的探索性分析。建立一个原始模型。可以有助于理解数据,采用适当的验证策略,或为引入奇特的想法提供数据的支持。 在这个初步阶段之后,我们可以根据不同的情况选择不 阅读全文
摘要:
1代的DALLE使用VQ-VAE 的改进版,2代的DALLE2 通过使用扩散模型将图片的生成提升到了一个新的高度,但是由于其计算量很大而且没有开源,我们普通用户并没有办法使用,但是Stable Diffusion 的出现改变现状,可以让我们普通用户也可以直接使用,并且以前相对于 Disco Diff 阅读全文
摘要:
什么是最大似然估计(MLE) 最大似然估计(Maximum Likelihood Estimation)是一种可以生成拟合数据的任何分布的参数的最可能估计的技术。它是一种解决建模和统计中常见问题的方法——将概率分布拟合到数据集。 例如,假设数据来自泊松(λ)分布,在数据分析时需要知道λ参数来理解数据 阅读全文
摘要:
TorchMetrics可以为我们提供一种简单、干净、高效的方式来处理验证指标。TorchMetrics提供了许多现成的指标实现,如Accuracy, Dice, F1 Score, Recall, MAE等等,几乎最常见的指标都可以在里面找到。torchmetrics目前已经包好了80+任务评价指 阅读全文
摘要:
在处理单变量时间序列数据时,我们预测的一个最主要的方面是所有之前的数据都对未来的值有一定的影响。这使得常规的机器学习方法(如训练/分割数据和交叉验证)变得棘手。 在本文中我们使用《Apex英雄》中数据分析的玩家活动时间模式,并预测其增长或下降。我们的数据来自https://steamdb.info, 阅读全文
摘要:
偏态分布(skewness distribution)指频数分布的高峰位于一侧,尾部向另一侧延伸的分布。偏态分布是与“正态分布”相对,分布曲线左右不对称的数据次数分布,是连续随机变量概率分布的一种。可以通过峰度和偏度的计算,衡量偏态的程度。 1、The Generalized-Alpha-Beta- 阅读全文
摘要:
在微调GPT/BERT模型时,会经常遇到“ cuda out of memory”的情况。这是因为transformer是内存密集型的模型,并且内存要求也随序列长度而增加。所以如果能对模型的内存要求进行粗略的估计将有助于估计任务所需的资源。 如果你想直接看结果,可以跳到本文最后。不过在阅读本文前请记 阅读全文
摘要:
在这篇文章中,我将详细解释这篇论文《Why do tree-based models still outperform deep learning on tabular data》这篇论文解释了一个被世界各地的机器学习从业者在各种领域观察到的现象——基于树的模型在分析表格数据方面比深度学习/神经网络 阅读全文
摘要:
正态(高斯)分布在机器学习中起着核心作用,线性回归模型中要假设随机误差等方差并且服从正态分布,如果变量服从正态分布,那么更容易建立理论结果。 统计学领域的很大一部分研究都是假设数据是正态分布的,所以如果我们的数据具有是正态分布,那么么则可以获得更好的结果。但是一般情况下我们的数据都并不是正态分布,所 阅读全文