摘要:
时间序列预测是数据科学和商业分析中基于历史数据预测未来价值的一项重要技术。它有着广泛的应用,从需求规划、销售预测到计量经济分析。由于Python的多功能性和专业库的可用性,它已经成为一种流行的预测编程语言。其中一个为时间序列预测任务量身定制的库是skforecast。 在本文中,将介绍skforec 阅读全文
摘要:
大型语言模型(llm)的出现刺激了多个领域的创新。但是在思维链(CoT)提示和情境学习(ICL)等策略的驱动下,提示的复杂性不断增加,这给计算带来了挑战。这些冗长的提示需要大量的资源来进行推理,因此需要高效的解决方案,本文将介绍LLMLingua与专有的LlamaIndex的进行集成执行高效推理。 阅读全文
摘要:
评估聚类结果的有效性,即聚类评估或验证,对于聚类应用程序的成功至关重要。它可以确保聚类算法在数据中识别出有意义的聚类,还可以用来确定哪种聚类算法最适合特定的数据集和任务,并调优这些算法的超参数(例如k-means中的聚类数量,或DBSCAN中的密度参数)。 虽然监督学习技术有明确的性能指标,如准确性 阅读全文
摘要:
斯坦福大学的FlashFFTConv优化了扩展序列的快速傅里叶变换(FFT)卷积。该方法引入Monarch分解,在FLOP和I/O成本之间取得平衡,提高模型质量和效率。并且优于PyTorch和FlashAttention-v2。它可以处理更长的序列,并在人工智能应用程序中打开新的可能性。 处理长序列 阅读全文
摘要:
量化大型语言模型(llm)是减少这些模型大小和加快推理速度的最流行的方法。在这些技术中,GPTQ在gpu上提供了惊人的性能。与非量化模型相比,该方法使用的VRAM几乎减少了3倍,同时提供了相似的精度水平和更快的生成速度。 ExLlamaV2是一个旨在从GPTQ中挤出更多性能的库。由于新的内核,它还经 阅读全文
摘要:
今天也来凑个热闹,说说OpenAI的事。本来不想写的,但是看到自媒体又开始胡说八道,所以根据我自己得到的消息和理解说一说我的看法,这篇文章要是有个小姐姐解说录成视频,那肯定火了,但是我现在没资源,人也懒,所以就直接码字吧。 1、奥特曼突然被解雇 奥特曼前天还在APEC会议上还在演讲,第二天就宣布被解 阅读全文
摘要:
CoN要点 CoN框架由三种不同的类型组成,研究称之为阅读笔记。 上面的图像,类型(A)显示了检索到的数据或文档回答查询的位置。LLM仅使用NLG从提供的数据中格式化答案。 https://avoid.overfit.cn/post/1a108bbaf6c84b5fbc51554fefa222cd 阅读全文
摘要:
现代的人工智能硬件架构(例如,Nvidia Hopper, Nvidia Ada Lovelace和Habana Gaudi2)中,FP8张量内核能够显著提高每秒浮点运算(FLOPS),以及为人工智能训练和推理工作负载提供内存优化和节能的机会。 在这篇文章中,我们将介绍如何修改PyTorch训练脚本 阅读全文
摘要:
在过去的一年里,大型语言模型(llm)有了飞速的发展,在本文中,我们将探讨几种(量化)的方式,除此以外,还会介绍分片及不同的保存和压缩策略。 说明:每次加载LLM示例后,建议清除缓存,以防止出现OutOfMemory错误。 del model, tokenizer, pipe import torc 阅读全文
摘要:
这是一篇2022由纽约州立大学布法罗分校和Meta AI发布的论文,它主要的观点如下: 具有专家混合(MoEs)的稀疏激活mlp在保持计算常数的同时显着提高了模型容量和表达能力。此外gMLP表明,所有mlp都可以在语言建模方面与transformer相匹配,但在下游任务方面仍然落后。所以论文提出了s 阅读全文