摘要: 机器学习的核心目标是在未见过的新数据上实现准确预测。 当模型在训练数据上表现良好,但在测试数据上表现不佳时,即出现“过拟合”。这意味着模型从训练数据中学习了过多的噪声模式,从而丧失了在新数据上的泛化能力。 那么,过拟合的根本原因是什么?具体来说, 哪些特征(数据集的列)阻碍了模型在新数据上的有效泛化 阅读全文
posted @ 2025-02-01 10:37 deephub 阅读(13) 评论(0) 推荐(0) 编辑
点击右上角即可分享
微信分享提示