会员
周边
捐助
新闻
博问
闪存
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
deephub
overfit深度学习
博客园
首页
新随笔
联系
订阅
管理
2024年12月19日
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
摘要: 本文探讨在量化交易领域中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),我们要构建一个能够全面捕捉市场动态特性的交易系统。 特征表示学习 在特征工程阶段,SSDA通过降噪技术提取股票数据的鲁棒表示。该方法能够有效过滤市场噪声,
阅读全文
posted @ 2024-12-19 09:56 deephub
阅读(7)
评论(0)
推荐(0)
编辑
公告