会员
周边
捐助
新闻
博问
闪存
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
deephub
overfit深度学习
博客园
首页
新随笔
联系
订阅
管理
2024年10月13日
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
摘要: 本文深入探讨Transformer模型中三种关键的注意力机制:自注意力、交叉注意力和因果自注意力。这些机制是GPT-4、Llama等大型语言模型(LLMs)的核心组件。通过理解这些注意力机制,我们可以更好地把握这些模型的工作原理和应用潜力。 我们不仅会讨论理论概念,还将使用Python和PyTorc
阅读全文
posted @ 2024-10-13 09:55 deephub
阅读(49)
评论(0)
推荐(0)
编辑
公告