会员
周边
捐助
新闻
博问
闪存
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
deephub
overfit深度学习
博客园
首页
新随笔
联系
订阅
管理
2024年9月16日
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
摘要: 时间序列概况在日常生活和专业研究中都很常见。简而言之,时间序列概况是一系列连续的数据点 y(0), y(1), ..., y(t) ,其中时间 t 的点依赖于时间 t-1 的前一个点(或更早的时间点)。 在许多应用中,研究者致力于预测时间序列概况的未来行为。存在各种建模方法。这些模型通常基于过去或现
阅读全文
posted @ 2024-09-16 09:45 deephub
阅读(24)
评论(0)
推荐(0)
编辑
公告