会员
周边
捐助
新闻
博问
闪存
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
deephub
overfit深度学习
博客园
首页
新随笔
联系
订阅
管理
2024年9月12日
使用ClassificationThresholdTuner进行二元和多类分类问题阈值调整,提高模型性能增强结果可解释性
摘要: AUROC 指标,顾名思义,是基于 ROC 的,ROC 是一条显示真阳性率与假阳性率关系的曲线。ROC 曲线本身并不假设使用任何特定的阈值。但是曲线上的每个点对应一个特定的阈值。 在下面的图中,蓝色曲线是 ROC。这条曲线下的面积(AUROC)衡量了模型的总体性能,是在所有潜在阈值上的平均值。它衡量
阅读全文
posted @ 2024-09-12 12:14 deephub
阅读(25)
评论(0)
推荐(0)
编辑
公告