摘要: 在本文中,我们将探讨各种特征选择方法和技术,用以在保持模型评分可接受的情况下减少特征数量。通过减少噪声和冗余信息,模型可以更快地处理,并减少复杂性。 我们将使用所有特征作为基础模型。然后将执行各种特征选择技术,以确定保留和删除的最佳特征,同时不显著牺牲评分(R2 分数)。使用的方法包括: 相关性矩阵 阅读全文
posted @ 2024-07-26 10:49 deephub 阅读(28) 评论(0) 推荐(0) 编辑