摘要: 在分类问题中,一个常见的难题是决定输出为数字时各类别之间的切分点。例如,一个神经网络的输出是介于0到1之间的数字,比如0.7,这是对应于正类(1)还是负类(0)?常识告诉我们使用0.5作为决策标记,但如果低估正类的风险较高怎么办?或者如果类别不平衡呢? 在这些情况下,正确估计切分点需要复审概率和贝叶 阅读全文
posted @ 2024-07-25 10:30 deephub 阅读(7) 评论(0) 推荐(0) 编辑