会员
周边
捐助
新闻
博问
闪存
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
deephub
overfit深度学习
博客园
首页
新随笔
联系
订阅
管理
2024年4月16日
ORPO偏好优化:性能和DPO一样好并且更简单的对齐方法
摘要: 现在有许多方法可以使大型语言模型(LLM)与人类偏好保持一致。以人类反馈为基础的强化学习(RLHF)是最早的方法之一,并促成了ChatGPT的诞生,但RLHF的成本非常高。与RLHF相比,DPO、IPO和KTO的成本明显更低,因为它们不需要奖励模型。 虽然DPO和IPO的成本较低,但它们仍需训练两个
阅读全文
posted @ 2024-04-16 10:04 deephub
阅读(154)
评论(0)
推荐(0)
编辑
公告