摘要: 缺失值是现实数据集中的常见问题,处理缺失值是数据预处理的关键步骤。缺失值可能由于各种原因而发生,例如数据的结构和质量、数据输入错误、传输过程中的数据丢失或不完整的数据收集。这些缺失的值可能会影响机器学习模型的准确性和可靠性,因为它们可能会引入偏差并扭曲结果,有些模型甚至在在缺少值的情况下根本无法工作 阅读全文
posted @ 2023-03-16 11:06 deephub 阅读(43) 评论(0) 推荐(0) 编辑