会员
周边
捐助
新闻
博问
闪存
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
deephub
overfit深度学习
博客园
首页
新随笔
联系
订阅
管理
2022年7月17日
图神经网络的可解释性方法介绍和GNNExplainer解释预测的代码示例
摘要: 深度学习模型的可解释性为其预测提供了人类可以理解的推理。如果不解释预测背后的原因,深度学习算法就像黑匣子,对于一些场景说是无法被信任的。不提供预测的原因也会阻止深度学习算法在涉及跨域公平、隐私和安全的关键应用程序中使用。 深度学习模型的可解释性有助于增加对模型预测的信任, 提高模型对与公平、隐私和其
阅读全文
posted @ 2022-07-17 11:02 deephub
阅读(308)
评论(0)
推荐(0)
编辑
公告