摘要: softmax 函数在机器学习中无处不在:当远离分类边界时,它假设似然函数有一个修正的指数尾。 但是新数据可能不适合训练数据中使用的 z 值范围。如果出现新的数据点softmax将根据指数拟合确定其错误分类的概率;错误分类的机会并不能保证遵循其训练范围之外的指数(不仅如此——如果模型不够好,它只能将 阅读全文
posted @ 2022-06-02 11:10 deephub 阅读(30) 评论(0) 推荐(0) 编辑