会员
周边
捐助
新闻
博问
闪存
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
deephub
overfit深度学习
博客园
首页
新随笔
联系
订阅
管理
2022年2月9日
为什么交叉熵和KL散度在作为损失函数时是近似相等的
摘要: 在本文中,我们将介绍熵、交叉熵和 Kullback-Leibler Divergence [2] 的概念,并了解如何将它们近似为相等。 尽管最初的建议使用 KL 散度,但在构建生成对抗网络 [1] 时,在损失函数中使用交叉熵是一种常见的做法。这常常给该领域的新手造成混乱。当我们有多个概率分布并且我们
阅读全文
posted @ 2022-02-09 10:58 deephub
阅读(117)
评论(0)
推荐(0)
编辑
公告