02 2022 档案

摘要:特征工程是从现有特征创建新特征的过程,通过特征工程可以捕获原始特征不具有的与目标列的额外关系。这个过程对于提高机器学习算法的性能非常重要。尽管当数据科学家将特定的领域知识应用特定的转换时,特征工程效果最好,但有一些方法可以以自动化的方式完成,而无需先验领域知识。 在本文中,我们将通过一个示例介绍如何 阅读全文
posted @ 2022-02-28 10:34 deephub 阅读(89) 评论(0) 推荐(0) 编辑
摘要:所有的机器学习算法都需要输入数值型的向量数据,图嵌入通过学习从图的结构化数据到矢量表示的映射来获得节点的嵌入向量。它的最基本优化方法是将具有相似上下文的映射节点靠近嵌入空间。我们可以使用两种正交方法(同质性和结构等效性)之一或它们的组合来定义图中节点的上下文。 图数据库和机器学习 图数据库可以支持来 阅读全文
posted @ 2022-02-27 11:22 deephub 阅读(133) 评论(0) 推荐(0) 编辑
摘要:本篇文章将总结时间序列预测方法,并将所有方法分类介绍并提供相应的python代码示例,以下是本文将要介绍的方法列表: 1、使用平滑技术进行时间序列预测 指数平滑 Holt-Winters 法 2、单变量时间序列预测 自回归 (AR) 移动平均模型 (MA) 自回归滑动平均模型 (ARMA) 差分整合 阅读全文
posted @ 2022-02-26 11:05 deephub 阅读(1329) 评论(0) 推荐(0) 编辑
摘要:星际争霸 II 是暴雪开发的一款真正的战略游戏,它是一个挑战,因为它从机器学习的角度展示了一些有趣的属性:实时、部分可观察性以及广阔的行动和观察空间。掌握游戏需要时间策略规划,实时控制宏观和微观层面,具有实时反击对手的特点。 在本文中,我们将介绍 StarCarft II Unplugged 论文 阅读全文
posted @ 2022-02-25 11:28 deephub 阅读(142) 评论(0) 推荐(0) 编辑
摘要:大多数人都熟悉如何在图像、文本或表格数据上运行数据科学项目。但处理音频数据的样例非常的少见。在本文中,将介绍如何在机器学习的帮助下准备、探索和分析音频数据。简而言之:与其他的形式(例如文本或图像)类似我们需要将音频数据转换为机器可识别的格式。 音频数据的有趣之处在于您可以将其视为多种不同的模式: 可 阅读全文
posted @ 2022-02-24 09:35 deephub 阅读(217) 评论(0) 推荐(0) 编辑
摘要:机器学习通常涉及在训练期间可视化和度量模型的性能。有许多工具可用于此任务。在本文中,我们将重点介绍 TensorFlow 的开源工具套件,称为 TensorBoard,虽然他是TensorFlow 的一部分,但是可以独立安装,并且服务于Pytorch等其他的框架。 什么是 TensorBoard? 阅读全文
posted @ 2022-02-23 11:35 deephub 阅读(725) 评论(0) 推荐(0) 编辑
摘要:在本文中将介绍如何查找相似图像的理论基础并且使用一个用于查找商标的系统为例介绍相关的技术实现,本文提供有关在图像检索任务中使用的推荐方法的背景信息。 阅读本文后你将有能够从头开始创建类似图像的搜索引擎的能力。 图像检索(又名基于内容的图像检索Content-Based Image Retrieval 阅读全文
posted @ 2022-02-22 10:20 deephub 阅读(288) 评论(0) 推荐(0) 编辑
摘要:分割给定图像中的不同对象一直是计算机视觉领域的一项非常重要的任务。多年来,我们已经看到像 Deeplab 这样的自编码器模型被用于语义分割。在所有分割模型中,仍然有一个名字居于首位那就是U-Net。U-Net 于 2018 年发布,从那时起它获得了巨大的普及,并以某种形式用于与分割相关的几个不同任务 阅读全文
posted @ 2022-02-21 09:24 deephub 阅读(197) 评论(0) 推荐(0) 编辑
摘要:在文本自动理解的NLP任务中,命名实体识别(NER)是首要的任务。NER模型的作用是识别文本语料库中的命名实体例如人名、组织、位置、语言等。 NER模型可以用来理解一个文本句子/短语的意思。它可以识别文本中可能代表who、what和whom的单词,以及文本数据所指的其他主要实体。 在本文中,将介绍对 阅读全文
posted @ 2022-02-21 09:23 deephub 阅读(241) 评论(0) 推荐(0) 编辑
摘要:可视化有助于解释和理解深度学习模型的内部结构。通过模型计算图的可视化可以弄清楚神经网络是如何计算的,对于模型的可视化主要包括以下几个方面: 模型有多少层 每层的输入和输出形状 不同的层是如何连接的? 每层使用的参数 使用了不同的激活函数 本文将使用 Keras 和 PyTorch 构建一个简单的深度 阅读全文
posted @ 2022-02-20 11:15 deephub 阅读(454) 评论(0) 推荐(0) 编辑
摘要:在本文中,首先简要解释一下 混合密度网络 MDN (Mixture Density Network)是什么,然后将使用Python 代码构建 MDN 模型,最后使用构建好的模型进行多元回归并测试效果。 回归 “回归预测建模是逼近从输入变量 (X) 到连续输出变量 (y) 的映射函数 (f) [... 阅读全文
posted @ 2022-02-19 12:05 deephub 阅读(686) 评论(0) 推荐(0) 编辑
摘要:机器学习算法通常使用例如 kFold等的交叉验证技术来提高模型的准确度。在交叉验证过程中,预测是通过拆分出来的不用于模型训练的测试集进行的。这些预测被称为折外预测(out-of-fold predictions)。折外预测在机器学习中发挥着重要作用,可以提高模型的泛化性能。 在本文中,将介绍机器学习 阅读全文
posted @ 2022-02-18 11:34 deephub 阅读(455) 评论(0) 推荐(0) 编辑
摘要:快速回顾集成方法中的软投票和硬投票 集成方法是将两个或多个单独的机器学习算法的结果结合在一起,并试图产生比任何单个算法都准确的结果。 在软投票中,每个类别的概率被平均以产生结果。例如,如果算法 1 以 40% 的概率预测对象是一块岩石,而算法 2 以 80% 的概率预测它是一个岩石,那么集成将预测该 阅读全文
posted @ 2022-02-17 10:12 deephub 阅读(529) 评论(0) 推荐(0) 编辑
摘要:本文不是 NLP 研究的完整列表,因为太多了无法总结的这么完整!但是本文对影响NLP研究的一些重要的模型进行总结,并尽量让它简约而不是简单,如果你刚刚进入NLP领域,本文可以作为深入研究该领域的起点。 Bag of Words (BOW) [1954]:计算文档中每个单词的出现次数并将其用作特征。 阅读全文
posted @ 2022-02-16 11:01 deephub 阅读(46) 评论(0) 推荐(0) 编辑
摘要:EfficientNetV2是由 Google Research,Brain Team发布在2021 ICML的一篇论文,它结合使用NAS和缩放,优化训练速度和参数效率。并且模型中使用新操作(如 Fused-MBConv)在搜索空间中进行搜索。EfficientNetV2 模型比EfficientN 阅读全文
posted @ 2022-02-16 11:00 deephub 阅读(675) 评论(0) 推荐(0) 编辑
摘要:机器学习模型的生命周期可以分为以下步骤: 数据采集 数据预处理 特征工程 特征选择 建筑模型 超参数调整 模型部署 要构建模型就必须要对数据进行预处理。特征转换是这个过程中最重要的任务之一。在数据集中,大多数时候都会有不同大小的数据。为了使更好的预测,必须将不同的特征缩小到相同的幅度范围或某些特定的 阅读全文
posted @ 2022-02-15 11:31 deephub 阅读(313) 评论(0) 推荐(0) 编辑
摘要:牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。 以 Isaac Newton 和 Joseph Raphson 命名的 Newton-Raphson 方法在 阅读全文
posted @ 2022-02-14 10:22 deephub 阅读(509) 评论(0) 推荐(0) 编辑
摘要:聚类是一种无监督机器学习方法,可以从数据本身中识别出相似的数据点。对于一些聚类算法,例如 K-means,需要事先知道有多少个聚类。如果错误地指定了簇的数量,则结果的效果就会变得很差(参见图 1)。 这种情况下,s 变为负数,接近 -1。 在许多情况下,不知道数据中有多少个簇。但是弄清楚有多少簇可能 阅读全文
posted @ 2022-02-13 11:09 deephub 阅读(435) 评论(0) 推荐(0) 编辑
摘要:大多数图神经网络通常在所有节点都可用的特征假设下运行。但是在现实世界的中,特征通常只有部分可用(例如,在社交网络中,只有一小部分用户可以知道年龄和性别)。本文种展示的特征传播是一种用于处理图机器学习应用程序中缺失的特征的有效且可扩展的方法。它很简单,但效果出奇地好。 图神经网络 (GNN) 模型通常 阅读全文
posted @ 2022-02-12 10:14 deephub 阅读(102) 评论(0) 推荐(0) 编辑
摘要:时间序列数据随处可见,要进行时间序列分析,我们必须先对数据进行预处理。时间序列预处理技术对数据建模的准确性有重大影响。 在本文中,我们将主要讨论以下几点: 时间序列数据的定义及其重要性。 时间序列数据的预处理步骤。 构建时间序列数据,查找缺失值,对特征进行去噪,并查找数据集中存在的异常值。 首先,让 阅读全文
posted @ 2022-02-11 10:56 deephub 阅读(497) 评论(0) 推荐(0) 编辑
摘要:在进行数据科学时,可能会浪费大量时间编码并等待计算机运行某些东西。所以我选择了一些 Python 库,可以帮助你节省宝贵的时间。 1、Optuna Optuna 是一个开源的超参数优化框架,它可以自动为机器学习模型找到最佳超参数。 最基本的(也可能是众所周知的)替代方案是 sklearn 的 Gri 阅读全文
posted @ 2022-02-10 10:45 deephub 阅读(50) 评论(0) 推荐(0) 编辑
摘要:在本文中,我们将介绍熵、交叉熵和 Kullback-Leibler Divergence [2] 的概念,并了解如何将它们近似为相等。 尽管最初的建议使用 KL 散度,但在构建生成对抗网络 [1] 时,在损失函数中使用交叉熵是一种常见的做法。这常常给该领域的新手造成混乱。当我们有多个概率分布并且我们 阅读全文
posted @ 2022-02-09 10:58 deephub 阅读(123) 评论(0) 推荐(0) 编辑
摘要:机器学习模型已经变得越来越大,即使使用经过训练的模型当硬件不符合模型对它应该运行的期望时,推理的时间和内存成本也会飙升。为了缓解这个问题是使用蒸馏可以将网络缩小到合理的大小,同时最大限度地减少性能损失。 我们在以前的文章中介绍过 DistilBERT [1] 如何引入一种简单而有效的蒸馏技术,该技术 阅读全文
posted @ 2022-02-08 10:46 deephub 阅读(162) 评论(0) 推荐(0) 编辑
摘要:在本文中,介绍了使用人脸设计或草图来制作人脸照片的想法。该技术的应用包括角色设计、教育培训、面部变形和嫌疑人画像等。 有兴趣的可以先看看视频介绍: 要解决的问题 这篇文章的想法是设计一个应用程序来使用该面部草图来绘制一张真实的面部图像,该应用程序在警察、电影拍摄和面部彩绘中具有各种应用。这个想法的主 阅读全文
posted @ 2022-02-07 10:23 deephub 阅读(447) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示