Vision Transformer中的图像块嵌入详解:线性投影和二维卷积的数学原理与代码实现
Transformer 架构因其强大的通用性而备受瞩目,它能够处理文本、图像或任何类型的数据及其组合。其核心的“Attention”机制通过计算序列中每个 token 之间的自相似性,从而实现对各种类型数据的总结和生成。在 Vision Transformer 中,图像首先被分解为正方形图像块,然后将这些图像块展平为单个向量嵌入。这些嵌入可以被视为与文本嵌入(或任何其他嵌入)完全相同,甚至可以与其他数据类型进行连接。通常图像块的创建步骤会与使用 2D 卷积的第一个可学习的非线性变换相结合,这对于初学者来说可能比较难以理解,所以本文将深入探讨这一过程。
https://avoid.overfit.cn/post/6d5b2b3506f044caa3cc49bf611a3632
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2024-02-20 视频生成领域的发展概述:从多级扩散到LLM
2023-02-20 使用PyTorch-LSTM进行单变量时间序列预测的示例教程
2022-02-20 可视化深度学习模型架构的6个常用的方法总结