近端策略优化(PPO)算法的理论基础与PyTorch代码详解

近端策略优化(Proximal Policy Optimization, PPO)算法作为一种高效的策略优化方法,在深度强化学习领域获得了广泛应用。特别是在大语言模型(LLM)的人类反馈强化学习(RLHF)过程中,PPO扮演着核心角色。本文将深入探讨PPO的基本原理和实现细节。

PPO属于在线策略梯度方法的范畴。其基础形式可以用带有优势函数的策略梯度表达式来描述:

策略梯度的基础表达式(包含优势函数)。

这个表达式实际上构成了优势演员-评论家(Advantage Actor-Critic)方法的基础目标函数。PPO算法可以视为对该方法的一种改进和优化。

 

https://avoid.overfit.cn/post/ff4d892c414a4b9c9391a1812690eceb

posted @   deephub  阅读(20)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2024-02-12 使用PyOD进行异常值检测
2023-02-12 GPT-3 vs Bert vs GloVe vs Word2vec 文本嵌入技术的性能对比测试
2022-02-12 使用特征传播重构缺失数据进行图机器学习
点击右上角即可分享
微信分享提示