面向强化学习的状态空间建模:RSSM的介绍和PyTorch实现

循环状态空间模型(Recurrent State Space Models, RSSM)最初由 Danijar Hafer 等人在论文《Learning Latent Dynamics for Planning from Pixels》中提出。该模型在现代基于模型的强化学习(Model-Based Reinforcement Learning, MBRL)中发挥着关键作用,其主要目标是构建可靠的环境动态预测模型。通过这些学习得到的模型,智能体能够模拟未来轨迹并进行前瞻性的行为规划。

下面我们就来用一个实际案例来介绍RSSM。

 

https://avoid.overfit.cn/post/8d8412f5ef6544e4ba097547a38830ac

posted @   deephub  阅读(16)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2024-01-08 使用知识图谱提高RAG的能力,减少大模型幻觉
2023-01-08 9个时间序列交叉验证方法的介绍和对比
点击右上角即可分享
微信分享提示