PyTorch FlexAttention技术实践:基于BlockMask实现因果注意力与变长序列处理
本文介绍了如何利用torch 2.5及以上版本中新引入的FlexAttention和BlockMask功能来实现因果注意力机制与填充输入的处理。
鉴于目前网络上缺乏关于FlexAttention处理填充输入序列的完整代码示例和技术讨论,本文将详细阐述一种实现方法,该方法同时涵盖了因果注意力机制的实现。
本文不会详细讨论FlexAttention的理论基础,如需了解更多技术细节,建议参考PyTorch官方博客。
https://avoid.overfit.cn/post/96d77c0f872c43dd8c752b687af7babf
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2024-01-04 使用pytorch构建图卷积网络预测化学分子性质
2023-01-04 Python中的时间序列数据操作总结
2022-01-04 Matplotlib进行数据可视化的快速上手指南