使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
在时间序列分析领域中,数据缺失是一个不可避免的挑战。无论是由于传感器故障、数据传输中断还是设备维护等原因,这些缺失都会对数据分析和预测造成显著影响。传统的处理方法,如前向填充或简单插值,虽然实现简单,但在处理复杂数据时往往表现不足。
具体来说,当时间序列具有以下特征时,传统方法的局限性就会显现:
- 存在复杂的非线性模式
- 包含多层次的趋势变化
- 数据波动性较大
本文将通过实际案例,详细探讨如何运用机器学习技术来解决时间序列的缺失值问题。
数据说明
为了确保研究的可重复性,我们构建了一个模拟的能源生产数据集。这个数据集具有以下特征:
- 时间范围:2023年1月1日至2023年3月1日
- 采样频率:10分钟
- 数据特点:包含真实的昼夜能源生产周期
- 缺失设置:随机选择10%的数据点作为缺失值
让我们首先看看如何生成这个数据集:
https://avoid.overfit.cn/post/12d612023a8d4af6af191f57d4c8c451
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2023-12-14 使用GAN进行异常检测
2022-12-14 基于Vision Transformers的文档理解简介
2021-12-14 使用卷积神经网络进行实时面部表情检测