从方向导数到梯度:深度学习中的关键数学概念详解

  • 方向导数作为标量量,表征了函数在特定方向上的变化率。其数学表示为 ∇ᵤf(x) 或 Dᵤf(x)。
  • 对于标量函数 f(x): Rⁿ → R,其梯度由函数的偏导数构成向量场。梯度向量指向函数值增长最快的方向,其模长等于该方向的方向导数。
  • 方向导数的计算可通过两种方法实现:其一是引入函数 g(s) = f(x + su),方向导数即为 g′(0);其二是利用方向导数等于梯度与方向向量点积的性质:∇ᵤf(x) = ∇f(x)u。

引论

函数在不同方向上的变化特性分析在诸多领域具有重要意义,典型应用如神经网络中利用梯度更新权重的训练过程。本文将系统探讨方向导数与梯度的理论基础,并通过如下等式阐述二者的内在联系:

 

https://avoid.overfit.cn/post/7bd19d5225cf4f908139e0178ae7d901

posted @   deephub  阅读(42)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2023-12-08 https://avoid.overfit.cn/post/548ad625830a4645beba60a37a2b59d6
2022-12-08 图像数据的特征工程
点击右上角即可分享
微信分享提示