IoU已经out了,试试这几个变体:GIoU、DIoU和CIoU介绍与对比分析

这是目标检测领域的首选评估指标。计算两个边界框的IoU时,如果它们有重叠区域,就测量重叠面积,然后除以两个框所覆盖的总面积。

你是否曾经训练过一个模型,在评估指标上表现出色,但在实际可视化边界框时,却发现它在许多情况下都失败了?这可能是因为像简单交并比(IoU)这样的标准指标并没有很好地捕捉到你所期望的模型行为。

简单的IoU在当前阶段已经显得有些过时了。

IoU作为一个评估指标可能还算不错,尽管它仍然存在一些问题。但重要的是,其实已经有很多更新、更智能的指标。让我们来看看其中的几个,这样你可能就会重新考虑是否要在模型训练、评估和推理中继续使用IoU这个过时的指标。

 

https://avoid.overfit.cn/post/fd8eff2b11f14aba890d45649d72a44a

posted @   deephub  阅读(19)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-11-24 https://avoid.overfit.cn/post/161e4abfe1fa4e1a98ddf8511c16f2c6
2022-11-24 自回归滞后模型进行多变量时间序列预测
点击右上角即可分享
微信分享提示