SMoA: 基于稀疏混合架构的大语言模型协同优化框架
在大语言模型(LLM)快速发展的背景下,研究者们越来越关注如何通过多代理系统来增强模型性能。传统的多代理方法虽然避免了大规模再训练的需求,但仍面临着计算效率和思维多样性的挑战。本文提出的稀疏代理混合(Sparse Mixture-of-Agents, SMoA)框架,通过借鉴稀疏专家混合(Sparse Mixture-of-Experts, SMoE)的设计理念,有效解决了这些问题。
基础架构:MoA模型
在介绍SMoA之前,需要先了解基础的混合代理(Mixture-of-Agents, MoA)架构。在MoA中,系统包含l层,每层包含n个提议者(proposer)。其核心运算可以通过以下公式表示:
其中:
- P_i,j 表示第i层的第j个提议者
- x_i 是输入文本
- ⊕ 表示聚合-综合提示操作
- y_i 是第i层的输出
最终输出通过聚合器(Aggregator)生成:
SMoA架构解析
SMoA(Sparse Mixture-of-Agents)的架构设计融合了多层级代理交互和稀疏化处理,主要包含以下核心组件:
- 输入层:接收初始提示(Prompt)
- 处理层:包含多个并行的代理模块
- 输出层:生成最终响应
https://avoid.overfit.cn/post/ace63f7d197a44d6b0ce7086d0e5ba15
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2023-11-13 无监督学习的集成方法:相似性矩阵的聚类
2022-11-13 从头开始进行CUDA编程:线程间协作的常见技术