通过pin_memory 优化 PyTorch 数据加载和传输:工作原理、使用场景与性能分析

在 PyTorch 框架中,有一个看似简单的设置可以对模型性能产生重大影响:

  1. pin_memory

。这个设置具体起到了什么作用,为什么需要关注它呢?如果你正在处理大规模数据集、实时推理或复杂的多 GPU 训练任务,将

  1. pin_memory

设为

  1. True

可以提高 CPU 与 GPU 之间的数据传输速度,有可能节省关键的毫秒甚至秒级时间,而这些时间在数据密集型工作流中会不断累积。

你可能会产生疑问:为什么

  1. pin_memory

*如此重要?*其本质在于:

  1. pin_memory

设为

  1. True

时会在 CPU 上分配页面锁定(或称为"固定")的内存,加快了数据向 GPU 的传输速度。本文将深入探讨何时以及为何启用这一设置,帮助你优化 PyTorch 中的内存管理和数据吞吐量。

 

https://avoid.overfit.cn/post/cfbf700dc65741009372cf73ad53af36

posted @   deephub  阅读(30)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-11-09 使用递归图 recurrence plot 表征时间序列
2022-11-09 使用PyTorch实现简单的AlphaZero的算法(2):理解和实现蒙特卡洛树搜索
点击右上角即可分享
微信分享提示