基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践

文本到图谱的转换是一个具有技术挑战性的研究领域,其核心任务是将非结构化文本数据转换为结构化的图谱表示。这种技术虽然由来已久,但随着大型语言模型(LLMs)的发展,其应用范围得到了显著扩展,并逐渐成为主流技术方案之一。

上图展示了信息抽取过程中文本到知识图谱的转换。图左侧展示了包含个人与公司关系描述的非结构化文本文档;图右侧则展示了相同信息在知识图谱中的结构化表示,清晰地呈现了人员与组织之间的工作和创立关系。

 

https://avoid.overfit.cn/post/d673e2dec79b4df9823113e60d110ceb

posted @   deephub  阅读(33)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-11-06 使用蒙特卡罗模拟的投资组合优化
2022-11-06 PyTorch实现非极大值抑制(NMS)
点击右上角即可分享
微信分享提示