深入理解多重共线性:基本原理、影响、检验与修正策略
在数据科学和机器学习领域,构建可靠且稳健的模型是进行准确预测和获得有价值见解的关键。然而当模型中的变量开始呈现出高度相关性时,就会出现一个常见但容易被忽视的问题 —— 多重共线性。多重共线性是指两个或多个预测变量之间存在强相关性,导致模型难以区分它们对目标变量的贡献。如果忽视多重共线性,它会扭曲模型的结果,导致系数的可靠性下降,进而影响决策的准确性。本文将深入探讨多重共线性的本质,阐述其重要性,并提供有效处理多重共线性的方法,同时避免数据科学家常犯的陷阱。
https://avoid.overfit.cn/post/512ff1c71eb14f758ff82a94baf06f4c