11种经典时间序列预测方法:理论、Python实现与应用
时间序列分析和预测在现代数据科学中扮演着关键角色,广泛应用于金融、经济、气象学和工程等领域。本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
这些方法包括:
- 自回归(AR)
- 移动平均(MA)
- 自回归移动平均(ARMA)
- 自回归积分移动平均(ARIMA)
- 季节性自回归积分移动平均(SARIMA)
- 具有外生回归量的季节性自回归积分移动平均(SARIMAX)
- 向量自回归(VAR)
- 向量自回归移动平均(VARMA)
- 具有外生回归量的向量自回归移动平均(VARMAX)
- 简单指数平滑(SES)
- Holt-Winters指数平滑(HWES)
本文利用Python的Statsmodels库实现这些方法。Statsmodels提供了强大而灵活的工具,用于统计建模和计量经济学分析。
https://avoid.overfit.cn/post/51fe776e7d4349a88f477e35f0224ed1
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2023-10-22 使用TensorRT-LLM进行高性能推理
2022-10-22 比较CPU和GPU中的矩阵计算