机器学习中空间和时间自相关的分析:从理论基础到实践应用

空间和时间自相关是数据分析中的两个基本概念,它们揭示了现象在空间和时间维度上的相互依赖关系。这些概念在各个领域都有广泛应用,从环境科学到城市规划,从流行病学到经济学。本文将探讨这些概念的理论基础,并通过一个实际的野火风险预测案例来展示它们的应用。

图1: 空间自相关的不同模式:(a) 负自相关,(b) 无明显自相关,(c) 正自相关。

 

https://avoid.overfit.cn/post/696a8a440bf146908c8be20f31bdeb7c

posted @   deephub  阅读(39)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-10-20 使用Pytorch Geometric 进行链接预测代码示例
2022-10-20 谷歌AudioLM :通过歌曲片段生成后续的音乐
点击右上角即可分享
微信分享提示