三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力

本文深入探讨Transformer模型中三种关键的注意力机制:自注意力、交叉注意力和因果自注意力。这些机制是GPT-4、Llama等大型语言模型(LLMs)的核心组件。通过理解这些注意力机制,我们可以更好地把握这些模型的工作原理和应用潜力。

我们不仅会讨论理论概念,还将使用Python和PyTorch从零开始实现这些注意力机制。通过实际编码,我们可以更深入地理解这些机制的内部工作原理。

文章目录

  1. 自注意力机制- 理论基础- PyTorch实现- 多头注意力扩展
  2. 交叉注意力机制- 概念介绍- 与自注意力的区别- PyTorch实现
  3. 因果自注意力机制- 在语言模型中的应用- 实现细节- 优化技巧

通过这种结构,我们将逐步深入每种注意力机制从理论到实践提供全面的理解。让我们首先从自注意力机制开始,这是Transformer架构的基础组件。

自注意力概述

自注意力机制自2017年在开创性论文《Attention Is All You Need》中被提出以来,已成为最先进深度学习模型的核心,尤其是在自然语言处理(NLP)领域。考虑到其广泛应用,深入理解自注意力的运作机制变得尤为重要。

图1:原始Transformer架构

在深度学习中,"注意力"概念的引入最初是为了改进递归神经网络(RNNs)处理长序列或句子的能力。例如,在机器翻译任务中,逐字翻译通常无法捕捉语言的复杂语法和表达方式,导致翻译质量低下。

 

https://avoid.overfit.cn/post/e8a9be7f1a02402d8ce72c9526d7afa5

posted @   deephub  阅读(90)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-10-13 TimesNet:时间序列预测的最新模型
2022-10-13 数据科学家在使用Python时常犯的9个错误
点击右上角即可分享
微信分享提示