让模型评估模型:构建双代理RAG评估系统的步骤解析

在当前大语言模型(LLM)应用开发的背景下,一个关键问题是如何评估模型输出的准确性。我们需要确定哪些评估指标能够有效衡量提示(prompt)的效果,以及在多大程度上需要对提示进行优化。

为解决这一问题,我们将介绍一个基于双代理的RAG(检索增强生成)评估系统。该系统使用生成代理和反馈代理,基于预定义的测试集对输出进行评估。或者更简单的说,我们使用一个模型来评估另外一个模型的输出。

在本文中将详细介绍如何构建这样一个RAG评估系统,并展示基于四种提示工程技术的不同结果,包括ReAct、思维链(Chain of Thought)、自一致性(Self-Consistency)和角色提示(Role Prompting)。

以下是该项目的整体架构图:

https://avoid.overfit.cn/post/f64e1de74d8a423a859086dfed4d5a47

posted @ 2024-09-20 16:42  deephub  阅读(12)  评论(0编辑  收藏  举报